
Free Chapter!

Andrew Glassner

DEEP LEARNING:
From Basics

to Practice

www.glassner.com

@AndrewGlassner

Deep Learning:
From Basics to Practice
Copyright (c) 2018 by Andrew Glassner

www.glassner.com / @AndrewGlassner
All rights reserved. No part of this book, except as noted below, may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without
the prior written permission of the author, except in the case of brief quotations
embedded in critical articles or reviews.

The above reservation of rights does not apply to the program files associated with
this book (available on GitHub), or to the images and figures (also available on
GitHub), which are released under the MIT license. Any images or figures that are
not original to the author retain their original copyrights and protections, as noted
in the book and on the web pages where the images are provided.

All software in this book, or in its associated repositories, is provided “as is,” with-
out warranty of any kind, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular pupose, and noninfringe-
ment. In no event shall the authors or copyright holders be liable for any claim,
damages or other liability, whether in an action of contract, tort, or otherwise,
arising from, out of or in connection with the software or the use or other dealings
in the software.

First published February 20, 2018

Version 1.0.1	 March 3, 2018
Version 1.1	 March 22, 2018

Published by The Imaginary Institute, Seattle, WA.
http://www.imaginary-institute.com

Contact: andrew@imaginary-institute.com

Backpropagation

Chapter 18

This chapter is from my book, “Deep Learning: From Principles to
Practice,” by Andrew Glassner. I’m making it freely available! Feel free
to share this and other bonus chapters with friends and colleagues.

The book is in 2 volumes, available here:
http://amzn.to/2F4nz7k
http://amzn.to/2EQtPR2

You can download all the figures in the entire book, and all the Python
notebooks, for free from my GitHub site:
https://github.com/blueberrymusic

To get a free Kindle reader for your device, visit
https://www.amazon.com/kindle-dbs/fd/kcp

704

Chapter 18: Backpropagation

Contents

18.1 Why This Chapter Is Here.............................. 706
18.1.1 A Word On Subtlety...................................... 708

18.2 A Very Slow Way to Learn............................. 709
18.2.1 A Slow Way to Learn.................................... 712
18.2.2 A Faster Way to Learn................................. 716

18.3 No Activation Functions for Now................ 718

18.4 Neuron Outputs and Network Error........... 719
18.4.1 Errors Change Proportionally..................... 720

18.5 A Tiny Neural Network.................................. 726

18.6 Step 1: Deltas for the Output Neurons....... 732

18.7 Step 2: Using Deltas to Change Weights..... 745

18.8 Step 3: Other Neuron Deltas........................ 750

18.9 Backprop in Action.. 758

18.10 Using Activation Functions......................... 765

18.11 The Learning Rate... 774
18.11.1 Exploring the Learning Rate...................... 777

705

Chapter 18: Backpropagation

18.12 Discussion.. 787
18.12.1 Backprop In One Place............................... 787
18.12.2 What Backprop Doesn’t Do...................... 789
18.12.3 What Backprop Does Do........................... 789
18.12.4 Keeping Neurons Happy........................... 790
18.12.5 Mini-Batches... 795
18.12.6 Parallel Updates... 796
18.12.7 Why Backprop Is Attractive...................... 797
18.12.8 Backprop Is Not Guaranteed 797
18.12.9 A Little History... 798
18.12.10 Digging into the Math.............................. 800

References... 802

706

Chapter 18: Backpropagation

18.1 Why This Chapter Is Here
This chapter is about training a neural network. The very basic idea is
appealingly simple. Suppose we’re training a categorizer, which will
tell us which of several given labels should be assigned to a given input.
It might tell us what animal is featured in a photo, or whether a bone
in an image is broken or not, or what song a particular bit of audio
belongs to.

Training this neural network involves handing it a sample, and asking
it to predict that sample’s label. If the prediction matches the label
that we previously determined for it, we move on to the next sample.
If the prediction is wrong, we change the network to help it do better
next time.

Easily said, but not so easily done. This chapter is about how we
“change the network” so that it learns, or improves its ability to make
correct predictions. This approach works beautifully not just for clas-
sifiers, but for almost any kind of neural network.

Contrast a feed-forward network of neurons to the dedicated classi-
fiers we saw in Chapter 13. Each of those dedicated algorithms had
a customized, built-in learning method that measured the incoming
data to provide the information that classifier needed to know.

But a neural network is just a giant collection of neurons, each doing its
own little calculation and then passing on its results to other neurons.
Even when we organize them into layers, there’s no inherent learning
algorithm.

How can we train such a thing to produce the results we want? And
how can we do it efficiently?

707

Chapter 18: Backpropagation

The answer is called backpropagation, or simply backprop.
Without backprop, we wouldn’t have today’s widespread use of deep
learning, because we wouldn’t be able to train our models in reason-
able amounts of time. With backprop, deep learning algorithms are
practical and plentiful.

Backprop is a low-level algorithm. When we use libraries to build and
train deep learning systems, their finely-tuned routines give us both
speed and accuracy. Except as an educational exercise, or to implement
some new idea, we’re likely to never write our own code to perform
backprop.

So why is this chapter here? Why should we bother knowing about this
low-level algorithm at all? There are at least four good reasons to have
a general knowledge of backpropagation.

First, it’s important to understand backprop because knowledge of
one’s tools is part of becoming a master in any field. Sailors at sea, and
pilots in the air, need to understand how their autopilots work in order
to use them properly. A photographer with an auto-focus camera
needs to know how that feature works, what its limits are, and how to
control it, so that she can work with the automated system to capture
the images she wants. A basic knowledge of the core techniques of any
field is part of the process of gaining proficiency and developing mas-
tery. In this case, knowing something about backprop lets us read the
literature, talk to other people about deep learning ideas, and better
understand the algorithms and libraries we use.

Second, and more practically, knowing about backprop can help us
design networks that learn. When a network learns slowly, or not at
all, it can be because something is preventing backprop from running
properly. Backprop is a versatile and robust algorithm, but it’s not bul-
letproof. We can easily build networks where backprop won’t produce
useful changes, resulting in a network that stubbornly refuses to learn.
For those times when something’s going wrong with backprop, under-
standing the algorithm helps us fix things [Karpathy16].

708

Chapter 18: Backpropagation

Third, many important advances in neural networks rely on backprop
intimately. To learn these new ideas, and understand why they work
the way they do, it’s important to know the algorithms they’re building
on.

Finally, backprop is an elegant algorithm. It efficiently solves a prob-
lem that would otherwise require a prohibitive amount of time and
computer resources. It’s one of the conceptual treasures of the field.
As curious, thoughtful people it’s well worth our time to understand
this beautiful algorithm.

For these reasons and others, this chapter provides an introduction
to backprop. Generally speaking, introductions to backprop are pre-
sented mathematically, as a collection of equations with associated
discussion [Fullér10]. As usual, we’ll skip the mathematics and focus
instead on the concepts. The mechanics are common-sense at their
core, and don’t require any tools beyond basic arithmetic and the ideas
of a derivative and gradient, which we discussed in Chapter 5.

18.1.1 A Word On Subtlety
The backpropagation algorithm is not complicated. In fact, it’s remark-
ably simple, which is why it can be implemented so efficiently.

But simple does not always mean easy.

The backprop algorithm is subtle. In the discussion below, the algo-
rithm will take shape through a process of observations and reasoning,
and these steps may take some thought. We’ll try to be clear about
every step, but making the leap from reading to understanding may
require some work.

It’s worth the effort.

709

Chapter 18: Backpropagation

18.2 A Very Slow Way to Learn
Let’s begin with a very slow way to train a neural network. This will
give us a good starting point, which we’ll then improve.

Suppose we’ve been given a brand-new neural network consisting of
hundreds or even tens of thousands of interconnected neurons. The
network was designed to classify each input into one of 5 categories.
So it has 5 outputs, which we’ll number 1 to 5, and whichever one has
the largest output is the network’s prediction for an input’s category.
Figure 18.1 shows the idea.

Figure 18.1: A neural network predicting the class of an input sample.

Starting at the bottom of Figure 18.1, we have a sample with four fea-
tures and a label. The label tells us that the sample belongs to category
3. The features go into a neural network which has been designed to
provide 5 outputs, one for each class. In this example, the network has
incorrectly decided that the input belongs to class 1, because the larg-
est output, 0.9, is from output number 1.

710

Chapter 18: Backpropagation

Consider the state of our brand-new network, before it has seen any
inputs. As we know from Chapter 16, each input to each neuron has
an associated weight. There could easily be hundreds of thousands,
or many millions, of weights in our network. Typically, all of these
weights will have been initialized with small random numbers.

Let’s now run one piece of labeled training data through the net, as
in Figure 18.1. The sample’s features go into the first layer of neurons,
and the outputs of those neurons go into more neurons, and so on,
until they finally arrive at the output neurons, when they become the
output of the network. The index of the output neuron with the largest
value is the predicted class for this sample.

Since we’re starting with random numbers for our weights, we’re likely
to get essentially random outputs. So there’s a 1 in 5 chance the net-
work will happen to predict the right label for this sample. But there’s
a 4 in 5 chance it’ll get it wrong, so let’s assume that the network pre-
dicts the wrong category.

When the prediction doesn’t match the label, we can measure the error
numerically, coming up with a single number to tell us just how wrong
this answer is. We call this number the error score, or error, or
sometimes the loss (if the word “loss” seems like a strange synonym
for “error,” it may help to think to think of it as describing how much
information is “lost” if we categorize a sample using the output of the
classifier, rather than the label.).

The error (or loss) is a floating-point number that can take on any
value, though often we set things up so that it’s always positive. The
larger the error, the more “wrong” our network’s prediction is for the
label of this input.

An error of 0 means that the network predicted this sample’s label cor-
rectly. In a perfect world, we’d get the error down to 0 for every sample
in the training set. In practice, we usually settle for getting as close as
we can.

711

Chapter 18: Backpropagation

Let’s briefly recap some terminology from previous chapters. When we
speak of “the network’s error” with respect to a training set, we usu-
ally mean some kind of overall average that tells us how the network
is doing when taking all the training samples into consideration. We
call this the training error, since it’s the overall error we get from
predicting results from the training set. Similarly, the error from the
test or validation data is called the test error or validation error.
When the system is deployed, a measure of the mistakes it makes on
new data is called the generalization error, because it represents
how well (or poorly) the system manages to “generalize” from its train-
ing data to new, real-world data.

A nice way to think about the whole training process is to anthropo-
morphize the network. We can say that it “wants” to get its error down
to zero, and the whole point of the learning process is to help it achieve
that goal.

One advantage of this way of thinking is that we can make the net-
work do anything we want, just by setting up the error to “punish” any
quality or behavior that we don’t want. Since the algorithms we’ll see
in this chapter are designed to minimize the error, we know that any-
thing about the network’s behavior that contributes to the error will
get minimized.

The most natural thing to punish is getting the wrong answer, so the
error almost always includes a term that measures how far the output
is from the correct label. The worse the match between the prediction
and the label, the bigger this term will be. Since the network wants to
minimize the error, it will naturally minimize such mistakes.

This approach of “punishing” the network through the error score
means we can choose to include terms in the error for anything we can
measure and want to suppress. For example, another popular mea-
sure to add into the error is a regularization term, where we look
at the magnitude of all the weights in the network. As we’ll see later in
this chapter, we usually want those weights to be “small,” which often
means between −1 and 1. As the weights move beyond this range, we

712

Chapter 18: Backpropagation

add a larger number to the error. Since the network “wants” the small-
est error possible, it will try to keep the weights small so that this term
remains small.

All of this raises the natural question of how on earth the network is
able to accomplish this goal of minimizing the error. That’s the point
of this chapter.

Let’s start with a basic error measure that only punishes a mismatch
between the network’s prediction and the label.

Our first algorithm for teaching the network will be just a thought
experiment, since it would be absurdly slow on today’s computers.
But the motivation is right, and this slow algorithm will form the con-
ceptual basis for the more efficient techniques we’ll see later in this
chapter.

18.2.1 A Slow Way to Learn
Let’s stick with our running example of a classifier. We’ll give the net-
work a sample and compare the system’s prediction with the sample’s
label.

If the network got it right and predicted the correct label, we won’t
change anything and we’ll move on to the next sample. As the wise
man said, “If it ain’t broke, don’t fix it” [Seung05].

But if the result for a particular sample is incorrect (that is, the cate-
gory with the highest value does not match our label), we will try to
improve things. That is, we’ll learn from our mistakes.

How do we learn from this mistake? Let’s stick with this sample for
a while and try to help the network do a better job with it. First, we’ll
pick a small random number (which might be positive or negative).
Now we’ll pick one weight at random from the thousands or millions
of weights in the network, and we’ll add our small random value to
that weight.

713

Chapter 18: Backpropagation

Now we’ll evaluate our sample again. Everything up to that change will
be the same as before. But there will be a chain reaction of changes
in the outputs of the neurons starting at the weight we modified. The
new weight will produce a new input for the neuron that uses that
input, which will change that neuron’s output value, which will change
the output of every neuron that uses that output, which will change
the output of every neuron that uses any of those outputs, and so on.
Figure 18.2 shows this idea graphically.

Figure 18.2: Updating a single weight causes a chain reaction that ulti-
mately can change the network’s outputs.

Figure 18.2 shows a network of 5 layers with 3 neurons each. Data
flows from the inputs at the left to the outputs at the right. For simplic-
ity, not every neuron uses the output of every neuron on the previous
layer. In part (a) we select one weight at random, here shown in red
and marked w. In part (b) we modify the weight by adding a value m
to it, so the weight is now w+m. When we run the sample through the
network again, as shown in part (c), the new weight causes a change

714

Chapter 18: Backpropagation

in the output of the neuron it feeds into (in red). The output of that
neuron changes as a result, which causes the neurons it feeds into to
change their outputs, and the changes cascade all the way to the out-
put layer.

Now that we have a new output, we can compare it to the label and
measure the new error. If the new error is less than the previous error,
then we’ve made things better! We’ll keep this change, and move on to
the next sample.

But if the results didn’t get better then we’ll undo this change, restor-
ing the weight back to its previous value. We’ll then pick a new random
weight, change it by a newly-selected small random amount, and eval-
uate the network again.

We can continue this process of picking and nudging weights until the
results improve, or we decide we’ve tried enough times, or for any other
reason we decide to stop. Then we just move on to the next sample.

When we’ve used all the samples in our training set, we’ll just go
through them all again (maybe in a different order), over and over.
The idea is that we’ll improve a little bit from every mistake.

We can continue this process until the network classifies every input
correctly, or we’ve come close enough, or our patience is exhausted.

With this technique, we would expect the network to slowly improve,
though there may be setbacks along the way. For example, adjusting a
weight to improve one sample’s prediction might ruin the prediction
for one or more other samples. If so, when those samples come along
they will cause their own changes to improve their performance.

This thought algorithm isn’t perfect, because things could get stuck.
For example, there might be times when we need to adjust more than
one weight simultaneously. To fix that, we can imagine extending our
algorithm to assign multiple random changes to multiple random
weights. But let’s stick with the simpler version for now.

715

Chapter 18: Backpropagation

Given enough time and resources, the network would eventually find
a value for every weight that either predicts the right answer for every
sample, or it comes as close as that network possibly can.

The important word in that last sentence is eventually. As in, “The
water will boil, eventually,” or “The Andromeda galaxy will collide with
our Milky Way galaxy, eventually” [NASA12].

This technique, while a valid way to teach a network, is definitely not
practical. Modern networks can have millions of weights. Trying to
find the best values for all those weights with this algorithm is just not
realistic.

But this is the core idea. To train our network, we’ll watch its output,
and when it makes mistakes, we’ll adjust the weights to make those
mistakes less likely. Our goal in this chapter will be to take this rough
idea and re-structure it into a vastly more practical algorithm.

Before we move on, it’s worth noting that we’ve been talking about
weights, but not the bias term belonging to every neuron. We know
that every neuron’s bias gets added in along with the neuron’s weighted
inputs, so changing the bias would also change the output. Doesn’t that
mean that we want to adjust the bias values as well? We sure do. But
thanks to the bias trick we saw in Chapter 10, we don’t have to think
about the bias explicitly. That little bit of relabeling sets up the bias
to look like an input with its own weight, just like all the other inputs.
The beauty of this arrangement is that it means that as far as our train-
ing algorithm is concerned, the bias is just another weight to adjust. In
other words, all we need to think about is adjusting weights, and the
bias weights will automatically get adjusted along the way with all the
other weights.

Let’s now consider how we might improve our incredibly slow
weight-changing algorithm.

716

Chapter 18: Backpropagation

18.2.2 A Faster Way to Learn
The algorithm of the last section would improve our network, but at a
glacial pace.

One big source of inefficiency is that half of our adjustments to the
weights are in the wrong direction: we add a value when we should
instead have subtracted it, and vice-versa. That’s why we had to undo
our changes when the error went up. Another problem is that we tuned
each weight one by one, requiring us to evaluate an immense number
of samples. Let’s solve these problems.

We could avoid making mistakes if we knew beforehand whether we
wanted to nudge each weight along the number line to the right (that
is, make it more positive) or to the left (and make it more negative).

We can get exactly that information from the gradient of the error
with respect to that weight. Recall that we met the gradient in Chapter
5, where it told us how the height of a surface changes as each of its
parameters changes. Let’s narrow that down for the present case. In
1D (where the gradient is also called the derivative), the gradient is
the slope of a curve above a specific point. Our curve describes the net-
work’s error, and our point is the value of a weight. If the slope of the
error (the gradient) above the weight is positive (that is, the line goes
up as we move to the right), then moving the point to the right will
cause the error to go up. More useful to us is that moving the point to
the left will cause the error to go down. If the slope of the error is neg-
ative, the situations are reversed.

Figure 18.3 shows two examples.

717

Chapter 18: Backpropagation

Figure 18.3: The gradient tells us what will happen to the error (the black
curves) if we move a weight to the right. The gradient is given by the
slope of the curve directly above the point we’re interested in. Lines that
go up as we move right have a positive slope, otherwise they are negative.

In Figure 18.3(a), we see that if we move the round weight to the right,
the error will increase, because the slope of the error is positive. To
reduce the error, we need to move the round point left. The square
point’s gradient is negative, so we reduce the error by moving that
point right. Part (b) shows the gradient for the round point is negative,
so moving to the right will reduce the error. The square point’s gradi-
ent is positive, so we reduce the error by moving that point to the left.

If we had the gradient for a weight, we could always adjust it exactly as
needed to make the error go down.

Using the gradients wouldn’t be much of an advantage if they were
time-consuming to compute, so as our second improvement let’s sup-
pose that we can calculate the gradients for the weights very efficiently.
In fact, let’s suppose that we could quickly calculate the gradient for
every weight in the whole network. Then we could update all of the
weights simultaneously by adding a small value (positive or negative)
to each weight in the direction given by its own individual gradient.
That would be an immense time-saver.

718

Chapter 18: Backpropagation

Putting these together gives us a plan where we’ll run a sample through
the network, measure the output, compute the gradient for every
weight, and then use the gradient at each weight to move that weight
to the right or the left. This is exactly what we’re going to do.

This plan makes knowing the gradient an important issue. Finding the
gradient efficiently is the main goal of this chapter.

Before we continue, it’s worth noticing that this algorithm makes the
assumption that tweaking all the weights independently and simulta-
neously will lead to a reduction in the error. This is a bold assumption,
because we’ve already seen how changing one weight can cause ripple
effects through the rest of the network. Those effects could change the
values of other neurons, which in turn would change their gradients.
We won’t get into the details now, but we’ll see later that if we make
the changes to the weights small enough, that assumption will gener-
ally hold true, and the error will indeed go down.

18.3 No Activation Functions for
Now
For the next few sections in this chapter, we’re going to simplify the dis-
cussion by pretending that our neurons don’t have activation functions.

As we saw in Chapter 17, activation functions are essential to keep our
whole network from becoming nothing more than the equivalent of a
single neuron. So we need to use them.

But if we include them in our initial discussion of backprop, things
will get complicated, fast. If we leave activation functions out for just
a moment, the logic is much easier to follow. We’ll put them back in
again at the end.

719

Chapter 18: Backpropagation

Since we’re temporarily pretending that there are no activation func-
tions in our neurons, neurons in the following discussions just sum
up their weighted inputs, and present that sum as their output, as in
Figure 18.4. As before, each weight is named with a two-letter compos-
ite of the neuron it’s coming from and the neuron it’s going into.

Figure 18.4: Neuron D simply sums up its incoming values, and presents
that sum as its output. Here we’ve explicit named the weights on each
connection into neuron D.

Until we put explicitly put activation functions back in, our neurons
will emit nothing more than the sum of their weighted inputs.

18.4 Neuron Outputs and Network
Error
Our goal is to reduce the overall error for a sample, by adjusting the
network’s weights.

We’ll do this in two steps. In the first step, we calculate and store a
number called the “delta” for every neuron. This number is related to
the network’s error, as we’ll see below. This step is performed by the
backpropagation algorithm.

720

Chapter 18: Backpropagation

The second step uses those delta values at the neurons to update the
weights. This step is called the update step. It’s not typically consid-
ered part of backpropagation, but sometimes people casually roll the
two steps together and call the whole thing “backpropagation.”

The overall plan now is to run a sample through the network, get the
prediction, and compare that prediction to the label to get an error. If
their error is greater than 0, we use it to compute and store a number
we’ll call “delta” at every neuron. We use these delta values and the
neuron outputs to calculate an update value for each weight. The final
step is to apply every weight’s individual update so that it takes on a
new value.

Then we move on to the next sample, and repeat the process, over and
over again until the predictions are all perfect or we decide to stop.

Let’s now look at this mysterious “delta” value that we store at each
neuron.

18.4.1 Errors Change Proportionally
There are two key observations that will make sense of everything to
follow. These are both based on how the network behaves when we
ignore the activation functions, which we’re doing for the moment. As
promised above, we’ll put them back in later in this chapter.

The first observation is this: When any neuron output in our network
changes, the output error changes by a proportional amount.

Let’s unpack that statement.

Since we’re ignoring activation functions, there are really only two
types of values we care about in the system: weights (which we can set
and change as we please), and neuron outputs (which are computed
automatically, and which are beyond our direct control). Except for
the very first layer, a neuron’s input values are each the output of a

721

Chapter 18: Backpropagation

previous neuron times the weight of the connection that output travels
on. Each neuron’s output is just the sum of all of these weighted inputs.
Figure 18.5 recaps this idea graphically.

Figure 18.5: A small neural network with 11 neurons organized in 4 layers.
Data flows from the inputs at the left to the outputs at the right. Each
neuron’s inputs come from the outputs of the neurons on the previous
layer. This type of diagram, though common, easily becomes dense and
confusing, even with color-coding. We will avoid it when possible.

We know that we’ll be changing weights to improve our network. But
sometimes it’s easier to think about looking at the change in a neuron’s
output. As long as we keep using the same input, the only reason a neu-
ron’s output can change is because one of its weights has changed. So
in the rest of this chapter, any time we speak of the result of a change
in a neuron’s output, that came about because we changed one of the
weights that neuron depended on.

Let’s take this point of view now, and imagine we’re looking at a neu-
ron whose output has just changed. What happens to the network’s
error as a result? Because the only operations that are being carried
out in our network are multiplication and addition, if we work through
the numbers we’ll see that the result of this change is that the change
in the error is proportional to the change in the neuron’s output.

722

Chapter 18: Backpropagation

In other words, to find the change in the error, we find the change in
the neuron’s output and multiply that by some particular value. If we
double the amount of change in the neuron’s output, we’ll double the
amount of change in the error. If we cut the neuron’s output change by
one-third, we’ll cut the change in the output by one-third.

The connection between any change in the neuron’s output and the
resulting change in the final error is just the neuron’s change times
some number. This number goes by various names, but the most popu-
lar is probably the lower-case Greek letter δ (delta), though sometimes
the upper-case version, Δ, is used. Mathematicians often use the delta
character to mean “change” of some sort, so this was a natural (if terse)
choice of name.

So every neuron has a “delta,” or δ, associated with it. This is a real
number that can be big or small, positive or negative. If the neuron’s
output changes by a particular amount (that is, it goes up or down),
we multiply that change by that neuron’s delta, and that tells us how
the entire network’s output will change.

Let’s draw a couple of pictures to show the “before” and “after” con-
ditions of a neuron whose output changes. We’ll change the output of
the neuron using brute force: we’ll add some arbitrary number to the
summed inputs just before that value emerges as the neuron’s output.
As in Figure 18.2, we’ll use the letter m (for “modification”) for this
extra value.

Figure 18.6 shows the idea graphically.

723

Chapter 18: Backpropagation

Figure 18.6: Computing the change in the error due to a change in a
neuron’s output. Here we’re forcing a change in the neuron’s output by
adding an arbitrary amount m to the sum of the inputs. Because the
output will change by m, we know the change in the error is this differ-
ence m times the value of δ belonging to this neuron.

In Figure 18.6 we placed the value m inside the neuron. But we can
also change the output by changing one of the inputs. Let’s change the
value that’s coming in from neuron B. We know that the output of B
will get multiplied by the weight BD before it’s used by neuron D. So
let’s add our value m right after that weight has been applied. This will
have the same result as before, since we’re just adding m to the overall
sum that emerges from D. Figure 18.7 shows the idea. We can find the
change in the output like before, multiplying this change m in the out-
put by δ.

724

Chapter 18: Backpropagation

Figure 18.7: A variation of Figure 18.6, where we add m to the output of B
(after it has been multiplied by the weight BD). The output of D is again
changed by m, and the change in the error is again m times this neuron’s
value of δ.

To recap, if we know the change in a neuron’s output, and we know the
value of delta for that neuron, then we can predict the change in the
error by multiplying that change in the output by that neuron’s delta.

This is a remarkable observation, because it shows us explicitly how
the error changes based on the change in output of each neuron. The
value of delta acts like an amplifier, making any change in the neuron’s
output have a bigger or smaller effect on the network’s error.

An interesting result of multiplying the neuron’s change in output with
its delta is that if the change in the output and the value of delta both
have the same sign (that is, both are positive or negative), then the
change in the error will be positive, meaning that the error will increase.
If the change in the output and delta have opposite signs (that is, one

725

Chapter 18: Backpropagation

is negative and one is positive), then the change in the error will be
negative, meaning that the error will decrease. That’s the case we want,
since our goal is always to make the error as small as possible.

For instance, suppose that neuron A has a delta of 2, and for some
reason its output changes by −2 (say, changing from 5 to 3). Since the
delta is positive and the change in output is negative, the change in
the error will also be negative. In numbers, 2×−2=−4, so the error will
drop by 4.

On the other hand, suppose the delta of A is −2, and its output changes
by +2 (say from 3 to 5). Again, the signs are different, so the error will
change by −2×2=−4, and again the error will reduce by 4.

But if the change in A’s output is −2, and the delta is also −2, then the
signs are the same. Since −2×−2=4, the error will increase by 4.

At the start of this section we said there were two key observations we
wanted to note. The first, as we’ve been discussing, is that if a neuron’s
output changes, the error changes by a proportional amount.

The second key observation is: this whole discussion applies just as
well to the weights. After all, the weights and the outputs are multi-
plied together. When we multiply two arbitrary numbers, such as a
and b, then we make the result bigger by adding something to either
the value of a or b. In terms of our network, we can say that when any
weight in our network changes, the error changes by a proportional
amount.

If we wanted, we could work out a delta for every weight. And that
would be perfect. We would know just how to tweak each weight to
make the error go down. We just add in a small number whose sign is
opposite that of the weight’s delta.

Finding those deltas is what backprop is for. We find them by first
finding the delta for every neuron’s output. We’ll see below that with a
neuron’s delta, and its output, we can find the weight deltas.

726

Chapter 18: Backpropagation

We already know every neuron’s outputs, so let’s turn our attention to
finding those neuron deltas.

The beauty of backpropagation is that finding those values is incredi-
bly efficient.

18.5 A Tiny Neural Network
To get a handle on backprop, we’ll use a tiny network that classifies
2D points into two categories, which we’ll call class 1 and class 2. If
the points can be separated by a straight line then we could do this job
with just one perceptron, but we’ll use a little network because it lets
us see the general principles.

In this section we’ll look at the network and give a label to everything
we care about. That will make later discussions simpler and easier to
follow.

Figure 18.8 shows our network. The inputs are the X and Y coordi-
nates of each point, there are four neurons, and the outputs of the last
two serve as the outputs of the network. We call their outputs the pre-
dictions P1 and P2. The value of P1 is the network’s prediction of the
likelihood that our sample (that is, the X and Y at the input) belongs
to class 1, and P2 is its prediction of the likelihood that the sample
belongs to class 2. These aren’t actually probabilities because they
won’t necessarily add up to 1, but whichever is larger is the network’s
preferred choice of category for this input. We could make them into
probabilities (by adding a softmax layer, as discussed in Chapter 17),
but that would just make the discussion more complicated without
adding anything useful.

727

Chapter 18: Backpropagation

Figure 18.8: A simple network. The input has two features, which we
call X and Y. There are four neurons, ending with two predictions, P1 and
P2. These predict the likelihoods (not the probabilities) that our sample
belongs to class 1 or class 2, respectively.

Let’s label the weights. As usual, we’ll imagine that the weights are sit-
ting on the wires that connect neurons, rather than stored inside the
neurons. The name of each weight will be the name of the neuron pro-
viding that value at its output followed by the neuron using that value
as input. Figure 18.9 shows the names of all 8 weights in our network.

728

Chapter 18: Backpropagation

Figure 18.9: Giving names to each of the 8 weights in our tiny network.
Each weight is just the name of the two neurons it connects, with the
starting neuron (on the left) first, and then the destination neuron (on
the right) second. For the sake of consistency, we pretend that X and Y
are “neurons” when it comes to naming the weights, so XA is the name of
the weight that scales the value of X going into neuron A.

This is a tiny deep-learning network with two layers. The first
layer contains neurons A and B, and the second contains neurons C
and D, as shown in Figure 18.10.

729

Chapter 18: Backpropagation

Figure 18.10: Our tiny neural network has 2 layers. The input layer doesn’t
do any computing, so it’s usually not included in the layer count.

Two layers is not a terribly deep network, and two neurons per layers
is not a lot of computing power. We usually work with systems with
more layers, and more neurons on each layer. Determining how many
layers we should use for a given task, and how many neurons should
be on each layer, is something of an art and an experimental science.
In essence, we usually take a guess at those values, and then vary our
choices to try to improve the results.

In Chapter 20 we’ll discuss deep learning and its terminology. Let’s
jump ahead a little bit here and use that language for the various pieces
of the network in Figure 18.10. The input layer is just a conceptual
grouping of the inputs X and Y. These don’t correspond to neurons,
because these are just pieces of memory for storing the features in the
sample that’s been given to the network. When we count up the layers
in a network, we don’t usually count the input layer.

The hidden layer is called that because neurons A and B are “inside”
the network, and thus “hidden” from a viewer on the outside, who can
see only the inputs and outputs. The output layer is the set of neu-
rons that provide our outputs, here P1 and P2. These layer names are
a little asymmetrical because the input layer has no neurons, and the
output layer does, but they’re how the convention has developed.

730

Chapter 18: Backpropagation

Finally, we’ll want to refer to the output and delta for every neuron.
For this, we’ll make little two-letter names by combining the neuron’s
name with the value we want to refer to. So Ao and Bo will be the
names of the outputs of neurons A and B, and Aδ and Bδ will be the
delta values for those two neurons.

Figure 18.11 shows these values stored with their neurons.

Figure 18.11: Our simple network with the output and delta values for
each neuron.

We’ll be watching what happens when neuron outputs change, causing
changes to the error. We’ll label the change in the output of neuron A
as Am. We’ll label the error simply E, and a change to the error as Em.

As we saw above, if we have a change Am in the output of neuron A,
then multiplying that change by Aδ gives us the change in the error.
That is, the change Em is given by Am×Aδ. We’ll think of the action
of Aδ as multiplying, or scaling, the change in the output of neuron A,
giving us the corresponding change in the error. Figure 18.12 shows
the schematic setup we’ll use for visualizing the way changes in a neu-
ron’s output are scaled by its delta to produce changes to the error.

731

Chapter 18: Backpropagation

Figure 18.12: Our schematic for visualizing how changes in a neuron’s
output can change the network’s error. Read the diagram roughly left to
right.

At the left of Figure 18.12 we start with a neuron A. It starts with value
Ao, but we change one of the weights on its inputs so that the output
goes up by Am. The arrow inside the box for Am shows that this change
is positive. This change is multiplied by Aδ to give us Em, the change
in the error. We show Aδ as a wedge, illustrating the amplification of
Em. Adding this change to the previous value of the error, E, gives us
the new error E+Em. In this case, both Am and Aδ are positive, so the
change in the error Am×Aδ is also positive, increasing the error.

Keep in mind that the delta value Aδ relates a change in a neuron’s
output to a change in the error. These are not relative or percentage
changes, but the actual amounts. So if the output of A goes from 3 to
5, that’s a change of 2, so the change in the error would be Aδ×2. If the
output of A goes from 3000 to 3002, that’s still a change of 2, and the
error would change by the same amount, Aδ×2.

Now that we’ve labeled everything, we’re finally ready to look at the
backpropagation algorithm.

732

Chapter 18: Backpropagation

18.6 Step 1: Deltas for the Output
Neurons
Backpropagation is all about finding the delta value for each neuron.
To do that, we’ll find gradients of the error at the end of the network,
and then propagate, or move, those gradients back to the start. So we’ll
begin at the end: the output layer.

The outputs of neuron C and D in our tiny network give us the likeli-
hoods that the input is in class 1 or class 2, respectively. In a perfect
world, a sample that belongs to group 1 would produce a value of 1.0
for P1 and 0.0 for P2, meaning that the system is certain that it belongs
to class 1 and simultaneously certain that it does not belong to class 2.

If the system’s a little less certain, we might get P1=0.8 and P2=0.1, tell-
ing us that it’s much more likely that the sample is in class 1 (remember
that these aren’t probabilities, so they probably won’t sum to 1).

We’d like to come up with a single number to represent the network’s
error. To do that, we’ll compare the values of P1 and P2 with the label
for this sample.

The easiest way to make that comparison is if the label is one-hot
encoded, as we saw in Chapter 12. Recall that one-hot encoding
makes a list of numbers as long as the number of classes, and puts a 0
in every entry. Then it puts a 1 in the entry corresponding to the cor-
rect class. In our case, we have only two classes, so the encoder would
always start with list of two zeros, which we can write as (0, 0). For a
sample that belongs to class 1, it would put a 1 in the first slot, giving
us (1, 0). A sample from class 2 would get the label (0, 1). Sometimes
such a label is also called a target.

733

Chapter 18: Backpropagation

Let’s put the predictions P1 and P2 into a list as well: (P1, P2). Now
we can just compare the lists. There are lots of ways to do this. For
example, a simple way would be to find the difference between corre-
sponding elements from each list and then add up those differences.
Figure 18.13 shows the idea.

Figure 18.13: To find the error from a specific sample, we start by
supplying the sample’s features X and Y to the network. The outputs are
the predictions P1 and P2, telling us the likelihoods that the sample is in
class 1 and class 2, respectively. We compare those predictions with the
one-hot encoded label, and from that come up with a number repre-
senting the error. If the predictions match the label perfectly, the error is
0. The bigger the mismatch, the bigger the error.

If the prediction list is identical to the label list, then the error is 0. If
the two lists are close (say, (0.9, 0.1) and (1, 0)), then we’d want to come
up with an error number that’s bigger than 0, but maybe not enor-
mous. As the lists become more and more different, the error should
increase. The maximum error would come if the network is absolutely
wrong, for example predicting (1, 0) when the label says (0, 1).

There are many formulas for calculating the network error, and most
libraries let us choose among them. We’ll see in Chapters 23 and 24
that this error formula is one of the critical choices that defines what
our network is for. For instance, we’ll choose one type of error formula
if we’re building a network to classify inputs into categories, another
type of formula if our network is for predicting the next value in a

734

Chapter 18: Backpropagation

sequence, and yet another type of formula if we’re trying to match the
output of some other network. These formulas can be mathematically
complex, so we won’t go into those details here.

As Figure 18.13 shows, that formula for our simple network takes in 4
numbers (2 from the prediction and 2 from the label), and produces a
single number as a result.

But all the error formulas share the property that when they compare
a classifier’s output to the label, a perfect match will give a value of 0,
and increasingly incorrect matches will give increasingly large errors.

For each type of error formula, our library function will also provide
us with its gradient. The gradient tells us how the error will change
if we increase any one of the four inputs. This may seem redundant,
since we know that we want the outputs to match the label, so we can
tell how the outputs should change just by looking at them. But recall
that the error can include other terms, like the regularization term we
discussed above, so things can get more complicated.

In our simple case, we can use the gradient to tell us whether we’d like
the output of C to go up or down, and the same for D. We’ll pick the
direction for each neuron that causes the error to decrease.

Let’s think about drawing our error. We could also draw the gradient,
but usually that’s harder to interpret. When we draw the error itself,
we can usually see the gradient just by looking at the slope of the error.

Unfortunately, we can’t draw a nice picture of the error for our little
network because it would require five dimensions (four for the inputs
and one for the output). But things aren’t so bad. We don’t care about
how the error changes when the label changes, because the label can’t
change. For a given input, the label is fixed. So we can ignore the two
dimensions for the labels. That leaves us with just 3 dimensions.

And we can draw a 3D shape! So let’s plot the error. Remember that
we can visualize the gradient at any point just by imagining which way
a drop of water would flow if we placed it on the surface of the error
above that location.

735

Chapter 18: Backpropagation

Let’s draw a 3D diagram that shows the error for any set of values P1
and P2, for a given label. That is, we’ll set the value of the label, and
explore the error for different values of P1 and P2. Every error formula
will give us a somewhat different surface, but most will look roughly
like Figure 18.14.

Figure 18.14: Visualizing the error of our network, given a label (or target)
and our two predictions, P1 and P2. Top row: The label is (0, 1), so the error
is a bowl with its bottom at P1 = 0 and P2 = 1. As P1 and P2 diverge from
those values, the error goes up. Left: The error for each value of P1 and
P2. Right: A top-down view of the surface at the left, showing the height
using colored contours. Bottom row: The label is (1, 0), so now the error is
a bowl with the bottom at P1 = 1 and P2 = 0.

736

Chapter 18: Backpropagation

For both labels, the shape of the error surface is the same: a bowl with
a rounded bottom. The only difference is the location of the bottom of
the bowl, which is directly over the label. This makes sense, because
our whole intention is to get P1 and P2 to match the label. When they
do, we have zero error. So the bottom of the bowl has a value of 0, and
it sits right on top of the label. The more different P1 and P2 are from
the label, the more the error grows.

These plots let us make a connection between the gradient of this error
surface and the delta values for the output layer neurons C and D. It
will help to remember that P1, the likelihood of the sample belonging
to class 1, is just another name for the output of C, which we also call
Co. Similarly, P2 is another name for Do. So if we say that we want to
see a specific change in the value of P1, we’re saying that we want the
output of neuron C to change in that way, and the same is true for P2
and D.

Let’s look at one of these error surfaces a little more carefully so we can
really get a feeling for it. Suppose we have a label of (1,0), like in the
bottom row of Figure 18.14. Let’s suppose that for a particular sam-
ple, output P1 has the value −1, and output P2 has the value 0. In this
example, P2 matches the label, but we want P1 to change from −1 to 1.

Since we want to change P1 while leaving P2 alone, let’s look at the
part of the graph that tells us how the error will change by doing just
that. We’ll set P2=0 and look at the cross-section of the bowl for dif-
ferent values of P1. We can see it follows the overall bowl shape, as in
Figure 18.15.

737

Chapter 18: Backpropagation

Figure 18.15: Slicing away the error surface from the bottom left of Figure
18.14, where the label is (1,0). The revealed cross-section of the surface
shows us the values of the error for different values of P1 when P2 = 0.

Let’s look just at this slice of the error surface, shown in Figure 18.16.

Figure 18.16: Looking at the cross-section of the error function shown in
Figure 18.15, we can see how the error depends on different values of P1,
when P2 is fixed at 0.

738

Chapter 18: Backpropagation

In Figure 18.16 we’ve marked the value P1= −1 with an orange dot, and
we’ve drawn the derivative at the location on the curve directly above
this value of P1. This tells us that if we make P1 more positive (that is,
we move right from −1), the error in the network will decrease. But if
we go too far and increase P1 beyond the value of 1, the error will start
to increase again. The derivative is just the piece of the gradient that
applies to only P1, and tells us how the error changes as the value of P1
changes, for these values of P2 and the label. As we can see from the
figure, if we get too far away from −1 the derivative no longer matches
the curve, but close to −1 it does a good job.

We’ll come back to this idea again later: the derivative of a curve tells
us what happens to the error if we move P1 by a very small amount
from a given location. The smaller the move, the more accurate the
derivative will be at predicting our new error. This is true for any deriv-
ative, or any gradient.

We can see this characteristic in Figure 18.16. If we move P1 by 1 unit to
the right from −1, the derivative (in green) would land us at an error of
0, though it looks like the error for P1=0 (the value of the black curve)
is really about 1. We can use the derivative to predict the results for
large changes in P1, but our accuracy will go down the farther we move,
as we just saw. In the interests of clear figures that are easy to read,
we’ll sometimes make large moves when the difference between where
the derivative would land us, and where the real error curve tells us we
should be, are close enough.

Let’s use the derivative to predict the change in the error due to a
change in P1. What’s the slope of the green line in Figure 18.16? The
left end is at about (−2, 8), and the right end is at about (0,0). Thus the
line descends about 4 units for every 1 unit we move to the right, for a
slope of −4/1 or −4. So if P1 changed by 0.5 (that is, it changed from −1
to −0.5), we’d predict that the error would go down by 0.5×−4=−2.

That’s it! That’s the key observation that tells us the value of Cδ.

739

Chapter 18: Backpropagation

Remember that P1 is just another name for Co, the output of C. We’ve
found that a change of 1 in Co results in a change of −4 in the error. As
we discussed, we shouldn’t have too much confidence in this predic-
tion after such a big change in P1. But for small moves, the proportion
is right. For instance, if we were to increase P1 by 0.01, then we’d
expect the error to change by −4×0.01=−0.04, and for such a small
change in P1 the predicted change in the error should be pretty accu-
rate. If we increased P1 by 0.02, then we’d expect the error to change
by −4×0.02=−0.08. If we move P1 to the left, so it changed from −1 to,
say, −1.1 we’d expect the error to change by −0.1×−4=0.4, so the error
would increase by 0.4.

We’ve found that for any amount of change in Co, we can predict the
change in the error by multiplying Co by −4.

That’s exactly what we’ve been looking for! The value of Cδ is −4. Note
that this only holds for this label, and these values of Co and Do (or P1
and P2).

We’ve just found our first delta value, telling us how much the error
will change if there’s a change to the output of C. It’s just the derivative
of the error function measured at P1 (or Co).

Figure 18.17 shows what we’ve just described using our error diagram.

740

Chapter 18: Backpropagation

Figure 18.17: Our error diagram illustrating the change in the error from
a change in the output of neuron C. The original output is the green bar
at the far left. We imagine that due to a change in the inputs, the output
of C increases by an amount Cm. This is amplified by multiplying it with
Cδ, giving us the change in the error, Em. That is, Em=Cm×Cδ. Here the
value of Cm is about 1/4 (the upward arrow in the box for Cm tells us that
the change is positive), and the value of Cδ is −4 (the arrow in that box
tells us the value is negative). So Em=−4×1/4=−1. The new error, at the far
right, is the previous error plus Em.

Remember that at this point we’re not going to do anything with this
delta value. Our goal right now is just to find the deltas for our neu-
rons. We’ll use them later.

We assumed above that P2 already had the right value, and we only
needed to adjust P1. But what if they were both different than their
corresponding label values?

Then we’d repeat this whole process for P2, to get the value of Dδ, or
delta for neuron D. Let’s do just that.

In Figure 18.18 we can see the slices of the error for an input with a
corresponding label, or target, of (1,0) when P1 = −0.5, and P2 = 1.5.

741

Chapter 18: Backpropagation

Figure 18.18: Slicing our error function when both P1 and P2 are different
from the label. Left: The error due to different values of P1 when P2=1.5.
Right: The error due to different values of P2 when P1 = −0.5.

The cross-section curves are shown in Figure 18.19. Notice that the
curve for P1 has changed from Figure 18.16. That’s because the change
in P2 means we’re taking the P1 cross-section at P2=1.5 instead of
P2=0.

Figure 18.19: When neither P1 or P2 match the label, we can try to reduce
the error by adjusting each one individually. In this example, the label is
(1, 0). Left: The error for different values of P1 when P2 is 1.5. The smallest
value is a little more than 2. The derivative tells us that we can get to
that lower value by making P1 larger than its current value of −0.5 (that
is, moving to the right). Right: The error for different values of P2 when
P1 = −0.5. The current value of P2 is 1.5. The derivative tells us that we can
make the error smaller by making P2 smaller (that is, moving to the left).

742

Chapter 18: Backpropagation

For the specific values in this figure, it looks like a change of about 0.5
in P1 would result in a change of about −1.5 in the error, so Cδ is about

−1.5/0.5 = −3. Instead of changing P1, what if we changed P2? Looking
at the graph on the right, a change of about −0.5 (moving left this time,
towards the minimum of the bowl) would result in a change of about

−1.25 in the error, so Dδ is about 1.25/-0.5 = 2.5. The positive sign here
tells us that moving P2 to the right will cause the error to go up, so we
want to move P2 to the left.

There are some interesting things to observe here. First, although both
curves are bowl shaped, the bottoms of the bowls are at their respec-
tive label values. Second, because the current values of P1 and P2 are
on opposite sides of the bottom of their respective bowls, their deriva-
tives have opposite signs (one is positive, the other is negative).

The most important observation is that the minimum available error
is not 0. In particular, the curves never get lower than a bit more than
2. That’s because each curve looks at changing just one of the two val-
ues, while the other is left fixed. So even if P1 got to its ideal value of
1, there would still be error in the result because P2 is not at its ideal
value of 0, and vice-versa.

This means that if we change just one of these two values, we’ll never
get down to the minimum error of 0. To get the error down to 0, both
P1 and P2 have to work their way down to the bottom of their respec-
tive curves.

Here’s the wrinkle: each time either P1 or P2 changes, we pick out a
different cross-section of the error surface. That means we get differ-
ent curves for the error, just as Figure 18.16, when P2=0, is different
from Figure 18.19 when P2 = 1.5. Because the error curve has changed,
the deltas change as well.

So if we change either value, we have to restart this whole process
again from scratch before we know how to change the other value.

743

Chapter 18: Backpropagation

Well, not exactly. We’ll see later that we actually can update both val-
ues at the same time, as long as we take very small steps. But that’s
about as far as we can cheat before we risk driving the error up again.
Once we’ve taken our small steps, we have to evaluate the error sur-
face again to find new curves and then new derivatives before we can
adjust P1 and P2 again.

We’ve just described the general way to compute the delta values for
the output neurons (we’ll look at hidden neurons in a moment). In
practice, we often use a particular measure of error that makes things
easier, because we can write down a super simple formula for the
derivative, which in turns gives us an easy way to find the deltas. This
error measure is called the quadratic cost function, or the mean
squared error (or MSE) [Neilsen15a]. As usual, we won’t get into
the mathematics of this equation. What matters for us now is that this
choice of function for the error means that the derivative at any neu-
ron’s value (that is, the neuron’s delta value) is particularly easy to
calculate. The delta for an output neuron is the difference between the
neuron’s value and the corresponding label entry [Seung05]. Figure
18.20 shows the idea graphically.

Figure 18.20: When we use the quadratic cost function, the delta for
any output neuron is just the value in the label minus the output of that
neuron. As shown in red, we save that delta value with its neuron.

744

Chapter 18: Backpropagation

This little calculation matches up nicely with our bowl-shaped pictures
above. Remember that Co and P1 are two names for the same value, as
are Do and P2.

Let’s consider Co (or P1) when the first label is 1. If Co=1, then 1−Co=0,
so a tiny change to Co will have no effect on the output error. That
makes sense, because we’re at the bottom of the bowl where it’s flat.

Suppose that Co=2. Then the difference 1−Co=−1, telling us that a
change to Co will change the error by the same amount, but with oppo-
site sign (for example, a change of 0.2 in Co would result in a change
of −0.2 to the error). If Co is much larger, say Co=5, then 1−Co=−4,
telling us that any change to Co will be amplified by a factor of −4 in
the change to the error. That also makes sense, because we’re now at a
very steep part of the bowl where a small change in the input (Co) will
cause a big change in the output (the change in the error). We’ve been
using large numbers for convenience, but remember that the deriva-
tive only tells us what happens if we take a very small step.

The same thought process holds for neuron D, and its output Do (or
P2).

We’ve now completed the first step in backpropagation: we’ve found
the delta values for all the neurons in the output layer.

We’ve seen that the delta for an output neuron depends on the value in
the label and the neuron’s output. If the neuron’s output changes, the
delta will change as well.

So “the delta” is a temporary value that changes with every new label,
and every new output of the neuron. Following this observation, any
time we update the weights in our network, we’ll need to calculate new
deltas.

Remember that our goal is to find the deltas for the weights. When we
know the deltas for all the neurons in a layer, we can update all the
weights feeding into that layer.

Let’s see how that’s done.

745

Chapter 18: Backpropagation

18.7 Step 2: Using Deltas to
Change Weights
We’ve seen how to find a delta value for every neuron in the output
layer. If the output of any of those neurons changes by some amount,
we multiply that change by the neuron’s delta to find the change to the
output.

We know that a change to the neuron’s output can come from a change
in an input, which in turn can come from a change in a previous neu-
ron’s output or the weight connecting that output to this neuron. Let’s
look at these inputs.

We’ll focus on output neuron C, and the value it receives from neuron
A on the previous layer. Let’s use the temporarily name V to refer to
the value that arrives into C from A. It has a value given by the output
of A, or Ao, and the weight between A and C, or AC, so the value V is
Ao×AC. This setup is shown in Figure 18.21.

Figure 18.21: The value coming into neuron C, which we’re calling V for
the moment, is Ao (the output of A) times the weight AC, or Ao×AC.

If V changes for any reason, we know that the output of C will change
by V as well (since C is just adding up its inputs and passing on that
sum). Since the change in C is V, the network’s error will change by
V×Cδ, since we built Cδ to do just that.

There are only two ways the value of V can change in this setup: either
the output of A changes or the value of the weight changes.

746

Chapter 18: Backpropagation

Since the output of A is computed by the neuron automatically, there’s
not much we can do to adjust that value directly. But we can change
the weight, so let’s look at that.

Let’s modify the weight AC by adding some new value to it. We’ll call
that new value ACm, so the new value arriving at C is Ao×(AC+ACm).
This is shown in Figure 18.22.

Figure 18.22: If we change the weight AC, then this will change the value
of V. Here, the value of V coming into neuron C is Ao×(AC+ACm).

If we subtract the old value Ao×AC from the new value Ao×(AC+ACm),
we find that the change in the value coming into C due to our modify-
ing the weight is Ao×ACm.

Since this change goes into C, the change will then get multiplied by
Cδ, telling us the change in the network’s error as a result of modifying
the weight.

Hold on a second. That’s what we’ve wanted this whole time, to find
out what a change in the weight would do to the error. Have we just
found that?

Yup, we have. We’ve achieved our goal! We discovered how a change
to a weight would affect the network’s error.

Let’s look at that again.

If we change the weight AC by adding ACm to it, then we know the
change in the network’s error is given by the change in C, (Ao×ACm),
times the delta for C, or Cδ. That is, the change in error is (Ao×ACm)×Cδ.

Let’s suppose we increase the weight by 1. Then ACm=1, so the error
will change by Ao×Cδ.

747

Chapter 18: Backpropagation

So every change of +1 to the weight AC will cause a change of Ao×Cδ
to the network error. If we add 2 to the weight AC, we’ll get double this
change, or 2×(Ao×Cδ). If we add 0.5 to the weight, we’ll get half as
much, or 0.5×(Ao×Cδ).

We can turn this around, and say that if we want to increase the error
by 1, we should add 1/(Ao×Cδ) to the weight. But we want to make the
error go down. The same logic says that we can reduce the error by 1 if
we instead subtract the value 1/(Ao×Cδ) from the weight. So now we
know how to change this weight in order to reduce the overall error.

We’ve found what to do to the weight AC to decrease the error in this
little network. To subtract Ao×Cδ from the error, we subtract 1 from
AC.

Figure 18.23 shows that every change of 1 in the weight AC leads to a
corresponding change of Ao×Cδ in the network error in our network.
And subtracting that value leads to a change of −Ao×Cδ in the error.

Figure 18.23: For each change in the value of the weight AC, we can look
up the corresponding change in our network’s error. When AC changes by
1, the network error changes by Ao×Cδ.

748

Chapter 18: Backpropagation

We can summarize this process visually with a new convention for our
diagrams. We’ve been drawing the outputs of neurons as arrows com-
ing out of a circle to the right. Let’s draw deltas using arrows coming
out of the circles to the left, as in Figure 18.24.

Figure 18.24: Neuron C has an output Co, drawn with an arrow pointing
right, and a delta Cδ, drawn with an arrow pointing left.

With this convention, the whole process for finding the updated value
for a weight is summarized in Figure 18.25. Showing subtraction in a
diagram like this is hard, because if we have a “minus” node with two
incoming arrows, it’s not clear which value is being subtracted from
the other (that is, if the inputs are x and y, are we computing x−y or
y−x?). Our approach to computing AC−(Ao×Cδ) is to find Ao×Cδ, mul-
tiply that by −1, and then add that result to AC.

749

Chapter 18: Backpropagation

Figure 18.25: Updating the value of weight AC. We start with the output
Ao from neuron A and the delta Cδ from neuron C, and multiply them
together. We’d like to subtract this from the current value of AC. To show
this clearly in the diagram, we instead multiply the product by −1, and
then add it to AC. The green arrow is the update step, where this result
becomes the new value of AC.

Figure 18.25 is the goal of this chapter, and the reason we computed
Cδ.

This is how our network learns.

Figure 18.25 tells us how to change the weight AC to bring down
the error. The diagram says that to reduce the error, we should add

−Ao×Cδ to the value of AC.

Success!

If we change the weights for both output neurons C and D to reduce
the error by 1 from each neuron, we’d expect the error to go down by

−2. We can predict this because the neurons sharing the same layer
don’t rely on each other’s outputs. Since C and D are both in the out-
put layer, C doesn’t depend on Do and D doesn’t depend on Co. They
do depend on the outputs of neurons on previous layers, but right now
we’re just focusing on the effect of changing weights for C and D.

750

Chapter 18: Backpropagation

It’s wonderful that we know how to adjust the last two weights in the
network, but how about all the other weights? To use this technique,
we need to figure out the deltas for all the neurons in all the remaining
layers. Then we can use Figure 18.25 to improve all the weights in the
network.

And this brings us to the remarkable trick of backpropagation: we can
use the neuron deltas at one layer to find all the neuron deltas for its
preceding layer. And as we’ve just seen, knowing the neuron deltas
and the neuron outputs tells us how to update all the weights coming
into that neuron.

Let’s see how to do that.

18.8 Step 3: Other Neuron Deltas
Now that we have the delta values for the output neurons, we will use
them to compute the deltas for neurons on the layer just before the
output layer. In our simple model, that’s just neurons A and B. Let’s
focus for the moment just on neuron A, and its connection to neuron C.

What happens if Ao, the output of A, changes for some reason? Let’s
say it goes up by Am. Figure 18.26 follows the chain of actions from
this change in Ao to the change in Co to the change in the error.

751

Chapter 18: Backpropagation

Figure 18.26: Following the results if we change the output of neuron A.
Read the diagram left to right. The change to A, shown as Am, is multi-
plied by the weight AC and is added to the values accumulated by neuron
C. This raises the output of C by Cm. As we know, this change in C can be
multiplied by Cδ to find the change in the network error. In this example,
Am=5/4, and AC=1/5, so Cm=5/4×1/5=1/4. The value of Cδ is −4, so the
change in the error is 1/4×−4=−1.

We know that the neuron C adds together its weighted inputs and then
passes on the sum (since we’re ignoring the activation function for
now). So if nothing else changes in C except for the value coming from
A, that’s the only source of any change in Co, the output of C. We rep-
resent that change to Co as the value Cm. As we saw before, we can
predict the change in the network’s error by multiplying Cm by Cδ.

So now we have a chain of operations from neuron A to neuron C and
then to the error. The first step of the chain says that if we multiply the
change in Ao (that is, Am) by the weight AC, we’ll get Cm, the change
in in the output of C. And we know from above that if we multiply Cm
by Cδ, we get the change in the error.

So mushing this all together, we find that the error due to a change Am
in the output of A is Am×AC×Cδ.

752

Chapter 18: Backpropagation

In other words, if we multiply the change in A (that is, Am) by AC ×Cδ,
we get the change in the error due to the change in neuron A. That is,
Aδ=AC×Cδ.

We just identified the delta of A! Since the delta is the value that we
multiply a neuron’s change by to find the change in the error, and we
just found that value is AC ×Cδ, then we’ve found Aδ.

Figure 18.27 shows this visually.

Figure 18.27: We can mush together the operations in Figure 18.26 into
a more succinct diagram. In that figure, we saw that Am, the change in A,
gets multiplied by the weight AC and then the value Cδ. So we can repre-
sent that as a single step, where we multiply Am by the two values AC and
Cδ multiplied together. As before, the value of Am=5/4, AC=1/5, and Cδ is

−4. So AC×Cδ=−4/5, and multiplying that by Am=5/4 gives us a change in
the error of −1.0.

This is kind of amazing. Neuron C has disappeared. It’s literally out of
the picture in Figure 18.27. All we needed was its delta, Cδ, and from
that we could find Aδ, the delta for A. And now that we know Aδ, we
can update all of the weights that feed into neuron A, and then... no,
wait a second.

753

Chapter 18: Backpropagation

We don’t really have Aδ yet. We just have one piece of it.

At the start of this discussion we said we’d focus on neurons A and C,
and that was fine. But if we now remember the rest of the network, we
can see that neuron D also uses the output of A. If Ao changes due to
Am, then the output of D will change as well, and that will also have an
effect on the error.

To find the change in the error due to neuron D, caused by a change
to neuron A, we can repeat the process above, just replacing neuron C
with neuron D. So if Ao changes by Am, and nothing else changes, the
change in the error due to the change in D is given by AC×Dδ.

Figure 18.28 shows these two paths at the same time. This figure is set
up slightly differently from the ones above. Here, the effect of a change
in A on the error due to a change in C is shown by the path from the
center of the diagram moving to the right. The effect of a change in A
on the error due to a change in D is shown by the path from the center
of the diagram and moving left.

754

Chapter 18: Backpropagation

Figure 18.28: The output of neuron A is used by both neuron C and
neuron D. In this figure, we’ve changed our left-to-right convention to
show the same change in A, given by Am, affecting the final error by way
of two different paths, one to the left and one to the right, each starting
at neuron A in the center. The path through neuron C is shown going to
the right, where Am, the change in the output of A, is scaled by AC×Cδ to
get a change in the error labeled Em(AC). Moving from the center to the
left, Am is scaled by AD×Dδ to get another change to the error, labeled
Em(AD). The result is two separate changes to the error.

Figure 18.28 shows two separate changes to the error. Since neurons C
and D don’t influence each other, so their effects on the error are inde-
pendent. To find the total change to the error, we just add up the two
changes. Figure 18.29 shows the result of adding the change in error
via neuron C and the change via neuron D.

755

Chapter 18: Backpropagation

Figure 18.29: When the output of neuron A is used by both neuron C and
neuron D, the resulting changes to the error add together.

Now that we’ve handled all the paths from A to the outputs, we can
finally write the value for Aδ. Since the errors add together, as in Figure
18.29, we can just add up the factors that scale Am. If we write it out,
this is Aδ=(AC×Cδ)+(AD×Dδ).

Now that we’ve found the value of delta for neuron A, we can repeat
the process for neuron B to find its delta.

We’ve actually done something far better than find the delta for just
neurons A and B. We’ve found out how to get the value of delta for
every neuron in any network, no matter how many layers it has or
now many neurons there are!

That’s because everything we’ve done involves nothing more than a
neuron, the deltas of all the neurons in the next layer that use its value
as an input, and the weights that join them. With nothing more than
that, we can find the effect of a neuron’s change on the network’s error,
even if the output layer is dozens of layers away.

756

Chapter 18: Backpropagation

To summarize this visually, let’s expand on our convention for draw-
ing outputs and deltas as right-pointing and left-pointing arrows to
include the weights, as in Figure 18.30. We’ll say that the weight on
a connection multiplies either the output moving to the right, or the
delta moving to the left, depending on which step we’re thinking about.

Figure 18.30: Drawing the values associated with neuron A. (a) Our
convention is to draw the output Ao as an arrow coming out of the right
of the neuron, and the delta Aδ as an arrow coming out of the left. (b) The
output of A is multiplied by AC on its way to being used by C when we’re
evaluating a sample. (c) The delta of C is multiplied by AC on its to being
used by A when we’re computing delta values.

In other words, there is one connection with one weight joining neu-
rons A and C. If the arrow points to the right, then the weight multiplies
Ao, the output of A as it heads into neuron C. If the arrow points to the
left, the weight multiplies Cδ, the delta of C, as it heads into neuron A.

757

Chapter 18: Backpropagation

When we evaluate a sample, we use the feed-forward, left-to-right style
of drawing, where the output value from neuron A to neuron C travels
over a connection with weight AC. The result is that the value Ao×AC
arrives at neuron C where it’s added to other incoming values, as in
Figure 18.30(b).

When we later want to compute Aδ, we draw the flow from right-to-left.
Then the delta leaving neuron C travels over a connection with weight
AC. The result is that the value Cδ×AC arrives at neuron A where it’s
added to other incoming values, as in Figure 18.30(c).

Now we can summarize both the processing of a sample input, and the
computation of the deltas, in Figure 18.31.

Figure 18.31: Calculating the output and delta for neuron H. Left: To
calculate Ho, we scale the output of each preceding neuron by the weight
of its connection and add the results together. Right: To calculate Hδ, we
scale the delta of each following neuron by the connection’s weight and
add the results together.

This is pleasingly symmetrical. It also reveals an important practical
result: when a neuron is connected to the same number of preceding
and following neurons, calculating the delta for a neuron takes the
same amount of work (and therefore the same amount of time) as cal-
culating its output. So calculating deltas is as efficient as calculating
output values. Even when the input and output counts are different,
the amount of work involved is still close in both directions.

758

Chapter 18: Backpropagation

Note that Figure 18.31 doesn’t require anything of neuron H except
that it has inputs from a preceding layer that travel on connections
with weights, and deltas from a following layer that travel on connec-
tions with weights. So we can apply the left half of Figure 18.31 and
calculate the output of neuron H as soon as the outputs from the previ-
ous layer are available. And we can apply the right half of Figure 18.31
and calculate the delta of neuron H as soon as the deltas from the fol-
lowing layer are available.

This also tells us why we had to treat the output layer neurons as a
special case: there are no “next layer” deltas to be used.

This process of finding the delta for every neuron in the network is the
backpropagation algorithm.

18.9 Backprop in Action
In the last section we saw the backpropagation algorithm, which lets
us compute the delta for every neuron that in a network.

Because that calculation depended on the deltas in the following neu-
rons, and the output neurons don’t have any of those, we had to treat
the output neurons as a special case.

Once all the neuron deltas for any layer (including the output layer)
have been found, we can then step back one layer (towards the inputs),
and find the deltas all the neurons on that layer, and then step back
again, compute all the deltas, step back again, and so on until we reach
the input.

Let’s walk through the process of using backprop to find the deltas for
all the neurons in a slightly larger network.

In Figure 18.32 we show a new network with four layers. There are still
two inputs and outputs, but now we have 3 hidden layers of 2, 4, and 3
neurons.

759

Chapter 18: Backpropagation

Figure 18.32: A new classifier network with 2 inputs, 2 outputs, and 3
hidden layers.

We start things off by evaluating a sample. We provide the values of its
X and Y features to the inputs, and eventually the network produces
the output predictions P1 and P2.

Now we’ll start backpropagation by finding the error in the output neu-
rons, as shown in Figure 18.33.

Figure 18.33: Computing the delta of the first output neuron in a new
network. Using the general approach, we take the outputs of the output
layer (here called P1 and P2) and compare them to the label to derive an
error. From the outputs, the label, and the error value we find how much
a change in P1 would change the error. That value is the delta stored at
the neuron that produces P1.

760

Chapter 18: Backpropagation

We’ve begun arbitrarily with the upper neuron, which gives us the pre-
diction we’ve labeled P1 (the likelihood that the sample is in class 1).
From the values of P1 and P2 and the label, we can compute the error
in the network’s output. Let’s suppose the network didn’t get this sam-
ple perfectly predicted, so the error is greater than zero.

Using the error, the label, and the values of P1 and P2, we can com-
pute the value of delta for this neuron. If we’re using the quadratic
cost function, this delta is just the value of the label minus the value of
the neuron, as we saw in Figure 18.20. But if we’re using some other
function, it might be more complicated, so we’ve illustrated the gen-
eral case.

Once we’ve computed the value of delta for this neuron, we store it
with the neuron, and we’re done with that neuron for now.

We’ll repeat this process for all the other neurons in the output layer
(here we have only one more). That finishes up the output layer, since
we now have a delta for every neuron in the layer. Figure 18.34 sum-
marizes these two neurons getting their deltas.

761

Chapter 18: Backpropagation

Figure 18.34: Summarizing the steps for finding the delta for both output
neurons.

At this point we could start adjusting the weights coming into the out-
put layer, but we usually break things up by first finding all the neuron
deltas, and then adjusting all the weights. Let’s follow that typical
sequence here.

So we’ll move backwards one step to the third hidden layer (the one
with 3 neurons). Let’s consider finding the value of delta for the top-
most of these three, as in the left image of Figure 18.35.

762

Chapter 18: Backpropagation

Figure 18.35: Using backpropagation to find the deltas for the next-to-
last layer of neurons. To find the delta for each neuron, we find the deltas
of the neurons that use its output, multiply those deltas by the corre-
sponding weights, and add the results together.

To find the delta for this neuron, we follow the recipe of Figure 18.28
to get the individual contributions, and then the recipe of Figure 18.29
to add them together to get the delta for this neuron.

Now we just work our way through the layer, applying the same pro-
cess to each neuron. When we’ve completed all the neurons in this
3-neuron layer, we take a step backwards and start on the hidden layer
with 4 neurons.

And this is where things really become beautiful. To find the deltas
for each neuron in this layer, we need only the weights to each neuron
that uses this neuron’s output, and the deltas for those neurons, which
we just computed.

The other layers are irrelevant. We don’t care about the output layer
any more now. All we need are the deltas in the next layer’s neurons,
and the weights that get us to those neurons.

Figure 18.36 shows how we compute the deltas for the four neurons in
the second hidden layer.

763

Chapter 18: Backpropagation

Figure 18.36: Using backprop to find the delta values for the second
hidden layer.

When all 4 neurons have had deltas assigned to them, that layer is fin-
ished, and we take another step backwards.

Now we’re at the first hidden layer with two neurons. Each of these
connects to the 4 neurons on the next layer. Once again, all we care
about now are the deltas in that next layer and the weights that connect
the two layers. For each neuron we find the deltas for all the neurons
that consume that neuron’s output, multiply those by the weights, and
add up the results, as shown in Figure 18.37.

764

Chapter 18: Backpropagation

Figure 18.37: Using backprop to find the neurons for the first hidden
layer.

When Figure 18.37 is complete, we’ve found the delta for every neuron
in the network.

Now we’ll adjust the weights. We’ll run through the connections
between neurons and use the technique we saw in Figure 18.25 to
update for every weight to a new and improved value.

Figure 18.34 through Figure 18.37 show why the algorithm is called
backwards propagation. We’re taking the deltas from any layer and
propagating, or moving, their information backwards one layer at a
time, modifying it as we go.

As we’ve seen, computing each of these delta values is fast. It’s just one
multiplication per outgoing connection, and then adding those pieces
together. That takes almost no time at all.

Backprop becomes highly efficient when we use parallel hardware like
a GPU. Because the neurons on a layer of a feed-forward network don’t
interact, and the weights and deltas that get multiplied are already
computed, we can use a GPU to multiply all the deltas and weights for
an entire layer at once.

Computing an entire layer’s worth of deltas in parallel saves us a lot of
time. If each of our layers had 100 neurons, and we had enough hard-
ware, computing all 400 deltas would take only the same time required
to find 4 deltas.

765

Chapter 18: Backpropagation

The tremendous efficiency that comes from this parallelism is a key
reason why backprop is so important.

Now we have all of the deltas, and we know how to update the weights.
Once we actually do update the weights, we should re-compute all the
deltas, because they’re based on the weights.

We’re just about done, but we need to make good on our earlier prom-
ise and put activations functions back into our neurons.

18.10 Using Activation Functions
Including the activation function in backpropagation is a small step.
But understanding that step and why it’s the right thing to do takes a
bit of thinking. We left it off in our earlier discussion so we wouldn’t
get distracted, but let’s now get the activation function back in there.

We’ll start by thinking about a neuron during the feed-forward step,
when we’re evaluating a sample and data is flowing from left to right,
producing neuron outputs as it goes.

When we calculate the output of a neuron, the sum of the weighted
inputs goes through an activation function before it leaves the neuron,
as shown in Figure 18.38.

Figure 18.38: Neuron A, with its activation function.

766

Chapter 18: Backpropagation

To make things a bit more specific, let’s choose an activation function.
We’ll pick the sigmoid, discussed in Chapter 17, because it’s smooth and
makes for clear demonstrations. We won’t use any particular qualities
of the sigmoid, so our discussion will be applicable to any activation
function.

Figure 18.39 shows a plot of the sigmoid curve. Increasingly large pos-
itive values approach 1 ever more closely without quite getting there,
and increasingly large negative values approach 0, but never quite get
there, either. Rather than constantly refer to values with phrases like

“very, very nearly 1” or “extremely close to 0,” let’s say for simplicity
that input values that are greater than about 7 can be considered to get
an output value of 1, while those less than −7 can be considered to get
an output of 0. Values in the range (−7, 7) will be smoothly blended in
the S-shaped function that gives the sigmoid its name.

Figure 18.39: The sigmoid curve, plotted from −15 to 15. Values greater
than about 7 or less than about −7 are very near to 1 and 0, respectively.

Let’s look at neuron C in our original tiny four-neuron network of
Figure 18.8. Neuron C gets one input from neuron A, and one from
neuron B. For now, let’s look just at the input from A, as in Figure
18.40. The value Ao, or the output of A, gets multiplied by the weight

767

Chapter 18: Backpropagation

AC before it gets summed with all the other inputs in C. Since we’re
focusing just on the pair of neurons A and C, we’ll ignore any other
inputs to C. The input value Ao×AC is then used as the input to the
activation function to find the output value Co.

Figure 18.40: Ignoring the other inputs to A for the moment, the input
to the activation function is given by multiplying the output of A and
the weight AC. We can find the value of the activation function at that
point, which gives us the output Co. Left: When the output of A is Ao and
the weight is AC, the value into the activation function is Ao×AC. Right:
When the output of A is Ao and the weight is AC+ACm, the value into the
activation function is Ao×(AC+ACm). Here we show the values from the
left plot as dots with white in the center, and the new values as filled-in
dots. Note that the change in the output is substantial, because we’re on
a steep part of the curve.

We know that to reduce the error, we’ll be adding some positive or neg-
ative number ACm to the value of the weight AC. The right diagram in
Figure 18.40 shows the result of adding a positive value of ACm. In
this case, the output Co changes by a lot, because we’re on a steep part
of the curve.

So this says that by adding ACm to the weight, we’re going to have
a bigger effect on the output error than we would have had without
the activation function, because that function has turned our change
of ACm into something larger.

Suppose instead our starting value of Ao×AC put us near a shallow
part of the curve, and we add the same ACm to AC, as in Figure 18.41.

768

Chapter 18: Backpropagation

Figure 18.41: In a shallow part of the curve. Left: Before adding ACm as
in Figure 18.40. Right: Adding this value results in a small change in the
output of C.

Now adding the same value ACm to the weight causes a smaller change
in Co than before. In this case, it’s even less than ACm itself. The
smaller change to the output means there will be a smaller change in
the network error. In other words, adding ACm to the weight in this
situation will result in a smaller change to the output error than we’d
get if there was no activation function present.

What we’d love to have is something that can tell us, for any point
on the activation function curve, how steep the curve is at that point.
When we’re at a point where the curve is going up steeply to the right,
positive changes in the input will be amplified a lot, as in Figure 18.40.
When we’re at a point where the curve is going up shallowly to the
right, as in Figure 18.41, such changes will be amplified by a little.

If we change the input with a negative value of ACm, and move our
stating point to the left, then the amount of slope tells us how much
the change in the error will decrease. We get the same situations as in
Figure 18.40(b) and Figure 18.41(b), but with the starting and ending
positions reversed.

Happily, we already know how to find the slope of a curve: that’s just
the derivative. Figure 18.42 shows the sigmoid, and its derivative.

769

Chapter 18: Backpropagation

Figure 18.42: The sigmoid curve and its derivative. Note that the vertical
scales are different for the two plots.

The sigmoid is flat at the left and right ends. So if we’re in the flat
regions and we move left or right a little bit, that will cause little to no
change in the output of the function. In other words, the curve is flat,
or has no slope, or has a derivative of 0. The derivative increases as the
input moves from about −7 to 0 because the curve is getting steeper.
Then the derivative decreases back to 0 again even as the input keeps
going up because the curve becomes more shallow off to the right,
approaching 1 but never quite getting there.

If we were to work through the math, we’d find that this derivative is
exactly what we need to fix our prediction of the change to the error
based on a change to a weight. When we’re on a steep part of the curve,
we want to crank up the value of delta for this neuron, because changes
to its inputs will cause big changes in the activation function, and thus
have big changes to the network error. When we’re on a shallow part
of the curve, then changes to the inputs will have little effect on the
change in the output, so we want to make this neuron’s delta smaller.

In other words, to account for the activation function, we just take the
delta we normally compute, and multiply it by the derivative of the
activation function, evaluated at the same point that we used during

770

Chapter 18: Backpropagation

the forward pass. Now the delta accounts for how the activation func-
tion will exaggerate or diminish the amount of change in the neuron’s
output, and hence its effect on the network error.

To keep things nicely bundled, we can perform this step immediately
after computing the delta as we did before.

The whole business for one neuron is summarized in Figure 18.43.
Here we imagine we have a neuron H. The top part is the forward pass,
when we’re evaluating a sample and computing this neuron’s output.
Following a common convention, we’ve given the name z to the result
of the summation step. The value of the activation function is what
we get when we look vertically upwards from the point z on the X axis.
The bottom part of the figure is the backward pass, where we com-
pute this neuron’s delta. Again, we use z to find the derivative of the
activation function, and we multiply our incoming sum by that before
passing it on.

771

Chapter 18: Backpropagation

Figure 18.43: Network evaluation and backpropagation of deltas in a
nutshell, for neuron H. Top: In the forward pass, the weighted inputs
are added together, giving us a value we call z. The value of the activa-
tion function at z is our output Ho. Bottom: In the backward pass, the
weighted deltas are added together, and we use the z from before to look
up the derivative of the activation function. We multiply the sum of the
weighted deltas by this value, giving us Hδ.

In this figure, neuron H has three inputs, coming from neurons A, B,
and C, with output values Ao, Bo, and Co. During the forward pass,
when we’re finding the neuron’s output, these are multiplied respec-
tively by the weights AH, BH, and CH, and then added together. We’ve
labeled this sum with the letter z. Now we look up z in the activation
function, and its value is Ho, the output of this neuron.

772

Chapter 18: Backpropagation

Now when we run the backward pass to find the neuron’s delta, we
find the deltas of the neurons that use Ho as an input. Let’s say they’re
neurons J, K and L. So we multiply their deltas Jδ, Kδ, and Lδ by their
respective weights HJ, HK, and HL, and add up those results.

Now we get the value of z from the forward pass, and use it to find the
value of the derivative of the activation function. We multiply the sum
we just found with this number, and the result is Hδ, the delta for this
neuron.

This all goes for the output neurons too, if they have activation func-
tions, only in the backward pass we use the error information rather
than deltas from the next layer.

Notice how compact and local everything is. The forward pass depends
only on the output values of the previous layer, and the weights that
connect to them. The backward pass depends only on the deltas from
the following layer, the weights that connect to them, and the activa-
tion function.

Now we can see why we were able to get away with ignoring the activa-
tion function throughout most of this chapter. We can pretend that we
really did have an activation function all along: the identity activa-
tion function, shown in Figure 18.44. This has an output that’s the
same as its input. That is, it has no effect.

773

Chapter 18: Backpropagation

Figure 18.44: The identity function as activation function. Left: The iden-
tity produces as output the same value it received as input. Right: Its
derivative is 1 everywhere, because the function has a constant slope of 1.

As Figure 18.44 shows, the derivative of the identify activation func-
tion is always 1 (that’s because the function is a straight line with slope
of 1 everywhere, and the derivative at any point is just the slope of the
curve at that point). Let’s think back on our discussion of backpropa-
gation and include this identity activation within every neuron. During
the forward pass, the outputs would be unchanged by this function, so
it has no effect. During the backward pass, we’d always multiply the
summed deltas by 1, again having no effect.

We said earlier that our results weren’t limited to using the sigmoid.
That’s because we didn’t use any special properties of sigmoid in our
discussion, other than to assume it has a derivative everywhere. This
is why activation functions are designed so that they have a derivative
for every value (recall from Chapter 5 that library routines automat-
ically apply mathematical techniques to take care of any spots that
don’t have a derivative).

Let’s look at the popular ReLU activation function. Figure 18.45 shows
the ReLU function and its derivative.

774

Chapter 18: Backpropagation

Figure 18.45: The ReLU function as an activation function. Left: ReLU
returns its input when that value is 0 or larger, and otherwise returns 0.
Right: Its derivative is a step function, 0 for inputs less than 0 and 1 for
inputs greater than 0. The sudden jump at 0 is automatically managed
for us by libraries so that we have a smooth derivative everywhere.

Everything we did with the sigmoid can be applied to the ReLU, with-
out change. And the same goes for any other activation function.

That wraps things up. We’ve now put activation functions back into
our neurons.

That brings us to the end of basic backpropagation.

Before we leave the discussion, though, let’s look at a critical control
that keeps things working well: the learning rate.

18.11 The Learning Rate
In our description of updating a weight, we multiplied the left neu-
ron’s output value and the right neuron’s delta, and subtracted that
from the weight (recall Figure 18.25 from much earlier).

775

Chapter 18: Backpropagation

But as we’ve mentioned a few times, changing a weight by a lot in a
single step is often a recipe for trouble. The derivative is only accurate
for very tiny changes in a value. If we change a weight by too much, we
can jump right over the smallest value of the error, and even find our-
selves increasing the error.

On the other hand, if we change a weight by too little, we might see
only the tiniest bit of learning, slowing everything down. Still, that
inefficiency is usually better than a system that’s constantly over-re-
acting to errors.

In practice, we control the amount of change to the weights during
every update with a hyperparameter called the learning rate, often
symbolized by the lower-case Greek letter η (eta). This is a number
between 0 and 1, and it tells the weights how much of their newly-com-
puted value to use when they update.

When we set the learning rate to 0, the weights don’t change at all. Our
system will never change and never learn. If we set the learning rate
to 1, the system will apply big changes to the weights, and might over-
shoot the mark. If this happens a lot, the network can spend its time
constantly overshooting and then compensating, with the weights
bouncing around and never settling into their best values. So we usu-
ally set the learning rate somewhere between these extremes.

Figure 18.46 shows how the learning rate is applied. We just scale the
value of −(Ao×Cδ) by η before adding it back in to AC.

776

Chapter 18: Backpropagation

Figure 18.46: The learning rate helps us control how fast the network
learns by controlling the amount by which weights change on each
update. Here we see Figure 18.25 with an extra step that multiplies the
value −(Ao×Cδ) by the learning rate δ before adding it to AC. When δ is
a small positive number (say 0.01), then each change will be small, which
often helps the network learn.

The best choice of the learning rate is dependent on the specific net-
work we’ve built and the data we’re training on. Finding a good choice
of learning rate can be essential to getting the network to properly
learn at all. Once the system is learning, changing this value can
affect whether that process goes quickly or slowly. Usually we have
to hunt for the best value of eta using trial and error. Happily, there
are algorithms that automate the search for a good starting value for
the learning rate, and other algorithms that fine-tune the learning rate
as learning progresses. We’ll see such algorithms in Chapter 19. As a
general rule of thumb, and if none of our other choices direct us to a
particular learning rate, we often start with a value around 0.01 and
then train the network for a while, watching how well it learns. Then
we then raise or lower it from there and train again, over and over,
hunting for the value that learns most efficiently.

777

Chapter 18: Backpropagation

18.11.1 Exploring the Learning Rate
Let’s see how backprop performs with different learning rates. We’ll
build a classifier to find the boundary between the two half-moons
that we used in Chapter 15. Figure 18.47 shows our training data of
about 1500 points. We pre-processed this data to give it zero mean
and a standard deviation of 1 for each feature.

Figure 18.47: About 1500 points generated synthetically by the
make_moons() routine in scikit-learn.

Because we have only two categories, we’ll build a binary classifier.
This lets us skip the whole one-hot encoding of labels and dealing with
multiple outputs, and instead use just one output neuron. If the value
is near 0, the input is in one class. If the output is near 1, the input is in
the other class.

Our classifier will have 2 hidden layers, each with 4 neurons. These
are essentially arbitrary choices that give us a network that’s just com-
plex enough for our discussion. Both layers will be fully-connected, so
every neuron in the first hidden layer will send its output to every neu-
ron in the second hidden layer. Figure 18.48 shows the idea.

778

Chapter 18: Backpropagation

Figure 18.48: Our binary classifier takes in two values as input (the X and
Y of each point). Each input goes into the 4 neurons on the first layer. Each
of those 4 neurons connects to each of the 4 neurons on the next hidden
layer. Then a single neuron takes the outputs of the second hidden layer
and presents a single value for output. In this network, we’ve used ReLU
activation functions for the neurons in the hidden layers, and a sigmoid
activation function on the output neuron.

How many weights are in our network? There are 4 coming out of each
of the 2 inputs, then 4×4 between the layers, and then 4 going into
the output neuron. That gives us (2×4)+(4×4)+4=28. Each of the 9
neurons also has a bias term, so our network has 28+9=37 weights.
They start with small random numbers. Our goal is to use backprop to
adjust those 37 weights so that the number that comes out of the final
neuron always matches the label for that sample.

As we discussed above, we’ll evaluate one sample, calculate the error,
compute the deltas with backprop, and then update the weights using
the learning rate. Then we’ll move on to the next sample. Note that if
the error is 0, then the weights won’t change at all. Each time we pro-
cess all the samples in the training set, we say we’ve completed one
epoch of training.

Our discussion of backprop mentioned how much we rely on making
“small changes” to the weights. There are two reasons for this. The first
is that the direction of change for every weight is given by the derivative

779

Chapter 18: Backpropagation

(or gradient) of the error at that weight. But as we saw, the gradient is
only accurate very near the point we’re evaluating. If we move too far,
we may find ourselves increasing the error rather than decreasing it.

The second reason for taking small steps is that changes in weights
near the start of the network will cause changes in the outputs of neu-
rons later on, and we’ve seen that we use those neuron outputs to
help compute the changes to the later weights. To prevent everything
from turning into a terrible snarl of conflicting moves, we change the
weights only by small amounts.

But what is “small”? For every network and data set, we have to exper-
iment to find out. As we saw above, the size of our step is controlled
by the learning rate, or eta (η). The bigger this value, the more each
weight will move towards its new value.

Let’s start with a really large learning rate of 0.5. Figure 18.49 shows
the boundaries computed by our network for our test data.

Figure 18.49: The boundaries computed by our network using a learning
rate of 0.5.

780

Chapter 18: Backpropagation

This is terrible. Everything is being assigned to a single class, shown
by the light orange background. If we look at the accuracy and error
(or loss) after each epoch, we get the graphs of Figure 18.50.

Figure 18.50: Accuracy and loss for our moons data with a learning rate
of 0.5.

Things are looking bad. As we’d expect, the accuracy is just about 0.5,
meaning that half the points are being misclassified. This makes sense,
since the red and blue points are roughly evenly divided. If we assign
them all to one category, as we’re doing here, half of those assignments
will be wrong. The loss, or error, starts high and doesn’t fall. If we let
the network run for hundreds of epochs it continues on in this way,
never improving.

What are the weights doing? Figure 18.51 shows the values of all 37
weights during training.

781

Chapter 18: Backpropagation

Figure 18.51: The weights of our network when using a learning rate of
0.5. One weight is constantly changing and overshooting its goal, while
the others aren’t making any visible changes.

Most of the weights don’t seem to be moving at all, but they could be
meandering a little bit. The graph is dominated by one weight that’s
jumping all over. That weight is one of those going into the output
neuron, trying to move its output around to match the label. That
weight goes up, then down, then up, jumping too far every time, then
over-correcting by too much, then over-correcting for that, and so on.

These results are disappointing, but they’re not shocking, because a
learning rate of 0.5 is big.

Let’s reduce the training rate by a factor of 10 to a more common value
of 0.05. We’ll change absolutely nothing else about the network and
the data, and we’ll even re-use the same sequence of pseudo-random
numbers to initialize the weights. The new boundaries are shown in
Figure 18.52.

782

Chapter 18: Backpropagation

Figure 18.52: The decision boundaries when we use a learning rate of
0.05.

This is much better! This is great! Looking at the graphs in Figure 18.53
reveals that we’ve reached 100% accuracy on both the training and test
sets after about 16 epochs.

Figure 18.53: Accuracy and loss for our network when using a learning
rate of 0.05.

What are the weights doing? Figure 18.54 shows us their history.
Overall, this is way better, because lots of weights are changing. Some
weights are getting pretty large. In Chapter 20 we’ll cover regularization

783

Chapter 18: Backpropagation

techniques to keep the weights small in deep networks, and later in this
chapter we’ll see why it’s nice to keep the weights small (say, between

−1 and 1). For the moment, let’s just note that the weights have each
learned a good value.

Figure 18.54: The weights in our network over time, using a learning rate
of 0.05.

So that’s success. Our network has learned to perfectly sort the data,
and it did it in only 16 epochs, which is nice and fast. On a late 2014
iMac without GPU support, the whole training process took less than
10 seconds.

Just for fun, let’s lower the learning rate down to 0.01. Now the weights
will change even more slowly. Does this produce better results?

Figure 18.55 shows the decision boundary resulting from these tiny
steps. The boundary seems to use more straight lines than the bound-
ary in Figure 18.52, but both boundaries separate the sets perfectly.
We might prefer the boundaries of Figure 18.52 in some situations, as
they seem to better follow the shape of the data.

784

Chapter 18: Backpropagation

Figure 18.55: The decision boundaries for a learning rate of 0.01.

Figure 18.56 show our accuracy and loss graphs. Because our learning
rate is so much slower, our network takes around 170 epochs to get to
100% accuracy, rather than the 16 in Figure 18.54.

Figure 18.56: The accuracy and learning rate for our network using a
learning rate of 0.01.

These graphs show an interesting learning behavior. After an initial
jump, both the training and test accuracies reach about 90% and pla-
teau there. At the same time, the losses hit about 0.2 (for the test data)

785

Chapter 18: Backpropagation

and 0.25 (for the training), and they plateau as well. Then around
epoch 170, things improve rapidly again, with the accuracy climbing to
100% and the errors dropping to 0.

This pattern of alternating improvement and plateaus is not unusual,
and we can even see a hint of it in Figure 18.53 where there’s an imper-
fect plateau between epochs 3 and 8. These plateaus come from the
weights finding themselves on nearly flat regions of the error surface,
resulting in near-zero gradients, and thus their updates are very small.

Though our weights might be getting stuck in local minima, it’s more
common for them to get caught in a flat region of a saddle, like those we
saw in Chapter 5 [Dauphin14]. Sometimes it takes a long time for one
of the weights to move into a region where the gradient (or derivative)
is large enough to give it a good push. When one weight gets moving,
it’s common to see the others kick in as well, thanks to the cascading
effect of that first weight’s changes on the rest of the network.

The values of the weights follow almost the same pattern over time,
as shown in Figure 18.57. The interesting thing is that at least some
of the weights are not flat, or on a plateau. They’re changing, but very
slowly. The system is getting better, but in tiny steps that don’t show
up in the performance graphs until the changes become bigger around
epoch 170.

786

Chapter 18: Backpropagation

Figure 18.57: The history of our weights using a learning rate of 0.01.

The weights seem to be growing a little bit even at epoch 200. If we let
the system continue, these weights will continue to slowly grow over
time with no apparent effect on the accuracies or errors.

So was there any benefit to lowering the learning rate down to 0.01?
Not really. Even at 0.05, the categorization was already perfect on both
the training and test data. In this case, the smaller learning rate just
meant the network took longer to learn.

This investigation has shown us how sensitive the network is to our
choice of learning rate.

When we look for the best value for the learning rate, it can feel
like we’re the character of Goldilocks in recent versions of the fable
Goldilocks and the Three Bears [Wikipedia17]. We’re searching for
something that’s not too big, and not too small, but “just right.”

787

Chapter 18: Backpropagation

When our learning rate was too big, the weights took steps that were
too large, and the network never settled down or improved its per-
formance. When the learning rate was too small, our progress was
very slow, as the weights sometimes were creeping from one value to
another at a glacial pace.

When the learning rate was just right, training was fast and efficient,
and produced great results. In this case, they were perfect.

This kind of experimenting with the learning rate is part of developing
nearly every deep learning network. The speed with which backprop
changes the weights needs to be tuned to match the type of network
and the type of data. Happily, we’ll see in Chapter 19 that there are
automatic tools that can handle the learning rate for us in sophisti-
cated ways.

18.12 Discussion
Let’s recap what we’ve seen, and then consider some of the implica-
tions of the backpropagation algorithm.

18.12.1 Backprop In One Place
To recap quickly, we start by running a sample through the network
and calculate the output for every neuron, as in Figure 18.58(a).

788

Chapter 18: Backpropagation

Figure 18.58: The backprop algorithm, along with weight update, in a
nutshell. This figure collects Figure 18.20, Figure 18.43, and Figure 18.46
in one place. Part (a) shows the forward step, part (b) shows finding the
deltas for the output neurons, part (c) steps propgates the deltas back-
wards, and step (d) updates the weights.

Then we kick off the backprop algorithm in Figure 18.58(b). We find
the delta value for each of the output neurons, telling us that if the
neuron’s output changes by a certain amount, the error will change by
that amount times the neuron’s delta.

Now we take a step backwards in Figure 18.58(c) to the previous layer
of the network, and find the deltas for all the neurons in that layer. We
need only the deltas from the output layer, and the weights between
the two layers.

Once all the deltas are assigned, we update the weights. Using the del-
tas and neuron outputs, we compute an adjustment to every weight.
We scale that adjustment by the learning rate, and then add it to the
current value of the weight to get the new, updated value of the weight,
as in in Figure 18.58(d).

789

Chapter 18: Backpropagation

18.12.2 What Backprop Doesn’t Do
There’s a shorthand in some discussions of backprop that can be con-
fusing. Authors sometimes say something like, “backpropagation
moves the error backwards from the output layer to the input layer,”
or “backpropagation uses the error at each layer to find the error at the
layer before.”

This can be misleading because backprop is not “moving the error” at
all. In fact, the only time we use “the error” is at the very start of the
process when we find the delta values for the output neurons.

What’s really going on involves the change in the error, which is rep-
resented by the delta values. These act as amplifiers of change in the
neuron outputs, telling us that if an output value or weight changes by
a given amount, we can predict the corresponding change in the error.

So backprop isn’t moving “the error” backwards. But something is
moving backwards. Let’s see what that is.

18.12.3 What Backprop Does Do
The first step in the backprop process is to find the deltas for the output
neurons. These are found from the gradient of the error. We sliced
the gradient to get a look at the 2D curve for each prediction, and then
we took the derivative of that curve, but that was just for ease of visu-
alization and discussion. The derivatives are just pieces of what really
matters: the gradient.

As we work our way backwards, the deltas continue to represent gra-
dients. Every delta value represents a different gradient. For instance,
the delta attached to a neuron C describes the gradient of the error
with respect to the output of C, and the delta for A describes the gradi-
ent of the error with respect to changes in the output of A.

790

Chapter 18: Backpropagation

So when we change the weights, we’re changing them in order to fol-
low the gradient of the error. This is an example of gradient descent,
which mimics the path that water takes as it runs downhill on a
landscape.

We can say that backpropagation is an algorithm that lets us efficiently
update our weights using gradient descent, since the deltas it com-
putes describe that gradient.

So a nice way to summarize backprop is to say that it moves the gradi-
ent of the error backwards, modifying it to account for each neuron’s
contribution.

18.12.4 Keeping Neurons Happy
When we put activation functions back into the backprop algorithm,
we concentrated on the region where the inputs are near 0.

That wasn’t an accident. Let’s return to the sigmoid function, and look
at what happens when the value into the activation function (that is,
the sum of the weighted inputs) becomes a very large number, say 10
or more. Figure 18.59 shows the sigmoid between values of −20 and
20, along with its derivative in the same range.

791

Chapter 18: Backpropagation

Figure 18.59: The sigmoid function becomes flat for very large positive
and negative values. Left: The sigmoid for the range −20 to 20. Right: The
derivative of the sigmoid in the same range. Note that the vertical scales
of the two plots are different.

The sigmoid never quite reaches exactly 1 or 0 at either end, but it
gets extremely close. Similarly, the value of the derivative never quite
reaches 0, but as we can see from the graph it gets very close.

Figure 18.60 shows a neuron with a sigmoid activation function. The
value going into the function, which we’ve labeled z, has the value 10,
putting it in one of the curve’s flat regions.

Figure 18.60: When we apply a large value (say 10) to the sigmoid, we
find ourselves in a flat region and get back the value of 1.

From Figure 18.59, we can see that the output is basically 1.

792

Chapter 18: Backpropagation

Now suppose that we change one of the weights, as shown in Figure
18.61. The value z increases, so we move right on the activation func-
tion curve to find our output. Let’s say that the new value of z is 15. The
output is still basically 1.

Figure 18.61: A big increase to the weight AD coming into this neuron
has no effect on its output, because it just pushes us further to the right
along the flat region of the sigmoid. The neuron’s output was 1 before we
added ADm to the weight AD, and it’s still 1 afterwards.

If we increase the value of the incoming weight again, even by a lot,
we’ll still get back an output of 1. In other words, changing the incom-
ing weight has no effect on the output. And because the output doesn’t
change, the error doesn’t change.

We could have predicted this from the derivative in Figure 18.59. When
the input is 15, the derivative is 0 (actually about 0.0000003, but our
convention above says that we can call that 0). So changing the input
will result no change in the output.

This is a terrible situation for any kind of learning, because we’ve lost
the ability to improve the network by adjusting this weight. In fact,
none of the weights coming into this neuron matter anymore (if we
keep the changes small), because any changes to the weighted sum of
the inputs, whether they make the sum smaller or larger, still lands us
on a flat part of the function and thus there’s no change to the output,
and no change to the error.

793

Chapter 18: Backpropagation

The same problem holds if the input value is very negative, say less
than −10. The sigmoid curve is flat in that region also, and the deriva-
tive is also essentially zero.

In both of these cases we say that this neuron has saturated. Like a
sponge that cannot hold any more water, this neuron cannot hold any
more input. The output is 1, and unless the weights, the incoming val-
ues, or both, move a lot closer to 0, it’s going to stay at 1.

The result is that this neuron no longer participates in learning, which
is a blow to our system. If this happens to enough neurons, the system
could become crippled, learning more slowly than it should, or per-
haps even not at all.

A popular way to prevent this problem is to use regularization. Recall
from Chapter 9 that the goal of regularization is to keep the sizes of the
weights small, or close to 0. Among other benefits, this has the value of
keeping the sum of the weighted inputs for each neuron also small and
close to zero, which puts us in the nice S-shaped part of the activation
function. This is where learning happens. In Chapters 23 and 24 we’ll
see techniques for regularization in deep learning networks.

Saturation can happen with any activation function where the output
curve becomes flat for a while (or forever).

Other activation functions can have their own problems. Consider the
popular ReLU curve, plotted from −20 to 20 in Figure 18.62.

794

Chapter 18: Backpropagation

Figure 18.62: The ReLU activation function in the range −20 to 20. Positive
values won’t saturate the function, but negative values can cause it to die.
Left: The ReLU function. Right: The derivative of ReLU.

As long as the input is positive, this function won’t saturate, because
the output is the same as the input. The derivative for positive inputs
is 1, so the sum of the weighted inputs will be passed directly to the
output without change.

But when the input is negative, the function’s output is 0, and the
derivative is 0 as well. Not only do changes make no difference to the
output, but the output itself has ceased to make any contribution to
the error. The neuron’s output is 0 and unless the weights, inputs, or
both change by a lot, it’s going to stay at 0.

To characterize this dramatic effect, we say that this neuron has died,
or is now dead.

Depending on the initial weights and the first input sample, one or
more neurons could die the very first time we perform an update step.
Then as training goes on, more neurons can die.

If a lot of neurons die during training, then our network is suddenly
working with just a fraction of the neurons we thought it had. That
cripples our network. Sometimes even 40% of our neurons can die off
during training [Karpathy16].

795

Chapter 18: Backpropagation

When we build a neural network we choose the activation functions for
each layer based on experience and expectations. In many situations,
sigmoids or ReLUs feel like the right function to use, and in many
circumstances they work great. But when a network learns slowly, or
fails to learn, it pays to look at the neurons and see if some or many
are saturated, dying, or dead. If so, we can experiment with our initial
starting weights and our learning rate to see if we can avoid the prob-
lem. If that doesn’t work, we might need to re-structure our network,
choose other activation functions, or both.

18.12.5 Mini-Batches
In our discussion above, we followed three steps for every sample:
run the sample through the network, calculate all the deltas, and then
adjust all the weights.

It turns out that we can save some time, and sometimes even improve
our learning, by only adjusting the weights infrequently.

Recall from Chapter 8 that the full training set of samples is sometimes
called a batch of samples. We can break up that batch into smaller
mini-batches. Usually the size of our mini-batch is picked to match
whatever parallel hardware we have available. For instance, if we our
hardware (say a GPU) can evaluate 16 samples simultaneously, then
our mini-batch size will be 16. Common mini-batch sizes are 16, 32,
and 64, though they can go higher.

The idea is that we run a mini-batch of samples through the network
in parallel, and then we compute all the deltas in parallel. We’ll aver-
age together all the deltas, and use those averages to then perform a
single update to the weights. So instead of updating the weights after
every sample, they’re updated after a mini-batch of 16 samples (or 32,
64, etc.).

This gives us a big increase in speed. It can also improve learning,
because the changes to the weights are smoothed out a little by the
averaging over the whole mini-batch. This means if there’s one weird

796

Chapter 18: Backpropagation

sample in the set, it can’t pull all the weights in an unwanted direction.
The deltas for that weird sample get averaged with the other 31 or 63
samples in the mini-batch, reducing its impact.

18.12.6 Parallel Updates
Since each weight depends only on values from the neurons at its two
ends, every weight’s update step is completely independent from every
other weight’s update step.

When we carry out the same steps for independent pieces of data, that’s
usually our cue to use parallel processing.

And indeed, most modern implementations will, if parallel hardware is
available, update all the weights in the network simultaneously. As we
just discussed, this update will usually happen after each mini-batch
of samples.

This is an enormous time-saver, but it comes at a cost. As we’ve dis-
cussed, changing any weight in the network will change the output
value for every neuron that’s downstream from that weight. So changes
to the weights near the very start of the network can have enormous
ripple effects on later neurons, causing them to change their outputs
by a lot.

Since the gradients represented by our deltas depend on the values in
the network, changing a weight near the input means that we should
really re-compute all the deltas for all the neurons that consume that
value that weight modifies. That could mean almost every neuron in
the network.

This would destroy our ability to update in parallel. It would also make
backprop agonizingly slow, since we’d be spending all of our time
re-evaluating gradients and computing deltas.

As we’ve seen, the way to prevent chaos is to use a “small enough”
learning rate. If the learning rate is too large, things go haywire and
don’t settle. If it’s too small, we waste a lot of time taking overly tiny

797

Chapter 18: Backpropagation

steps. Picking the “just right” value of the learning rate preserves the
efficiency of backprop, and our ability to carry out its calculations in
parallel.

18.12.7 Why Backprop Is Attractive
A big part of backprop’s appeal is that it’s so efficient. It’s the fastest
way that anyone has thought of to figure out how to most beneficially
update the weights in a neural network.

As we saw before, and summarized in Figure 18.43, running one step of
backprop in a modern library usually takes about as long as evaluating
a sample. In other words, consider the time it takes to start with new
values in the inputs, and flow that data through the whole network and
ultimately to the output layer. Running one step of backprop to com-
pute all the resulting deltas takes about the same amount of time.

That remarkable fact is at the heart of why backprop has become a key
workhorse of machine learning, even though we usually have to deal
with issues like a fiddly learning rate, saturating neurons, and dying
neurons.

18.12.8 Backprop Is Not Guaranteed
It’s important to note that there’s no guarantee that this scheme is
going to learn anything! It’s not like the single perceptron of Chapter
10, where we have ironclad proofs that after enough steps, the percep-
tron will find the dividing line it’s looking for.

When we have many thousands of neurons, and potentially many mil-
lions of weights, the problem is too complicated to give a rigorous
proof that things will always behave as we want.

In fact, things often do go wrong when we first try to train a new net-
work. The network might learn glacially slowly, or even not at all. It
might improve for a bit and then seem to suddenly take a wrong turn

798

Chapter 18: Backpropagation

and forget everything. All kinds of stuff can happen, which is why
many modern libraries offer visualization tools for watching the per-
formance of a network as it learns.

When things go wrong, the first thing many people try is to crank the
learning rate to a very small value. If everything settles down, that’s a
good sign. If the system now appears to be learning, even if it’s barely
perceptible, that’s another good sign. Then we can slowly increase the
learning rate until it’s learning as quickly as possible without succumb-
ing to chaos.

If that doesn’t work, then there might be a problem with the design of
the network.

This is a complex problem to deal with. Designing a successful network
means making a lot of good choices. For instance, we need to choose
the number of layers, the number of neurons on each layer, how the
neurons should be connected, what activation functions to use, what
learning rate to use, and so on. Getting everything right can be chal-
lenging. We usually need a combination of experience, knowledge of
our data, and experimentation to design a neural network that will not
only learn, but do it efficiently.

In the following chapters we’ll see some architectures that have proven
to be good starting points for wide varieties of tasks. But each new
combination of network and data is its own new thing, and requires
thought and patience.

18.12.9 A Little History
When backpropagation was first described in the neural network liter-
ature in 1986 it completely changed how people thought about neural
networks [Rumelhart86]. The explosion of research and practical ben-
efits that followed were all made possible by this surprisingly efficient
technique for finding gradients.

799

Chapter 18: Backpropagation

But this wasn’t the first time that backprop had been discovered or used.
This algorithm, which has been called one of the 30 “great numerical
algorithms” [Trefethen15], has been discovered and re-discovered by
different people in different fields since at least the 1960’s. There are
many disciplines that use connected networks of mathematical oper-
ations, and finding the derivatives and gradients of those operations
at every step is a common and important problem. Clever people who
tackled this problem have re-discovered backprop time and again,
often giving it a new name each time.

Excellent capsule histories are available online and in print
[Griewank12] [Schmidhuber15] [Kurenkov15] [Werbos96]. We’ll sum-
marize some of the common threads here. But history can only cover
the published literature. There’s no knowing how many people have
discovered and re-discovered backprop, but didn’t publish it.

Perhaps the earliest use of backprop in the form we know it today
was published in 1970, when it was used for analyzing the accuracy
of numerical calculations [Linnainmaa70], though there was no ref-
erence made to neural networks. The process of finding a derivative
is sometimes called differentiation, so the technique was known as
reverse-mode automatic differentiation.

It was independently discovered at about the same time by another
researcher who was working in chemical engineering [Griewank12].

Perhaps its first explicit investigation for use in neural networks was
made in 1974 [Werbos74], but because such ideas were out of fashion,
that work wasn’t published until 1982 [Schmidhuber15].

Reverse-mode automatic differentiation was used in various sci-
ences for years. But when the classic 1986 paper re-discovered the
idea and demonstrated its value to neural networks the idea immedi-
ately became a staple of the field under the name backpropagation
[Rumelhart86].

800

Chapter 18: Backpropagation

Backpropagation is central to deep learning, and it forms the founda-
tion for the techniques that we’ll be considering in the remainder of
this book.

18.12.10 Digging into the Math
This section offers some suggestions for dealing with the math of back-
propagation. If you’re not interested in that, you can safely skip this
section.

Backpropagation is all about manipulations to numbers, hence its
description as a “numerical algorithm.” That makes it a natural for
presenting in a mathematical context.

Even when the equations are stripped down, they can appear formida-
ble [Neilsen15b]. Here are a few hints for getting through the notation
and into the heart of the matter.

First, it’s essential to master each author’s notation. There are a lot of
things running around in backpropagation: errors, weights, activation
functions, gradients, and so on. Everything will have a name, usually
just a single letter. A good first step is to scan through the whole dis-
cussion quickly, and notice what names are given to what objects. It
often helps to write these down so you don’t have to search for their
meanings later.

The next step is to work out how these names are used to refer to the
different objects. For example, each weight might be written as some-
thing like w ljk , referring to the weight that links neuron number k on
layer l to neuron j on layer l+1. This is a lot to pack into one symbol,
and when there are several of these things in one equation it can get
hard to sort out what’s going on.

801

Chapter 18: Backpropagation

One way to clear the thickets is to choose values for all the subscripts,
and then simplify the equations so each of these highly-indexed terms
refers to just one specific thing (such as a single weight). If you think
visually, consider drawing pictures showing just what objects are
involved, and how their values are being used.

The heart of the backprop algorithm can be thought of, and written
as, an application of the chain rule from calculus [Karpathy15]. This
is an elegant way to describe the way different changes relate to one
another, but it requires familiarity with multidimensional calculus.
Luckily, there’s a wealth of online tutorials and resources designed
to help people come up to speed on just this topic [MathCentre09]
[Khan13].

We’ve seen that in practice the computations for outputs, deltas, and
weight updates can be performed in parallel. They can also be writ-
ten in a parallel form using the linear algebra language of vectors and
matrices. For example, it’s common to write the heart of the forward
pass (without each neuron’s activation function) with a matrix repre-
senting the weights between two layers. Then we use that matrix to
multiply a vector of the neuron outputs in the previous layer. In the
same way, we can write the heart of the backward pass as the trans-
pose of that weight matrix times a vector of the following layer’s deltas.

This is a natural formalism, since these computations consist of lots of
multiplies followed by additions, which is just what matrix multiplica-
tion does for us. And this structure fits nicely onto a GPU, so it’s a nice
place to start when writing code.

But this linear algebra formalism can obscure the relatively sim-
ple steps, because one now has to deal with not just the underlying
computation, but its parallel structure in the matrix format, and the
proliferation of indices that often comes along with it. We can say that
compacting the equations in this form is a type of optimization, where
we’re aiming for simplicity in both the equations and the algorithms
they describe. When learning backprop, people who aren’t already
very familiar with linear algebra can reasonably feel that this is a form

802

Chapter 18: Backpropagation

of premature optimization, because (until it is mastered) it obscures,
rather than elucidates, the underlying mechanics [Hyde09]. Arguably,
only once the backprop algorithm is fully understood should it be
rolled up into the more compact matrix form. Thus it may be helpful
to either find a presentation that doesn’t start with the matrix algebra
approach, or try to pull those equations apart into individual opera-
tions, rather than big parallel multiplications of matrices and vectors.

Another potential hurdle is that the activation functions (and their
derivatives) tend to get presented in different ad hoc ways.

To summarize, many authors start their discussions with either the
chain rule or matrix forms of the basic equations, so that the equa-
tions appear tidy and compact. Then they explain why those equations
are useful and correct. Such notation and equations can look daunting,
but if we pull them apart to their basics we’ll recognize the steps we
saw in this chapter. Once we’ve unpacked these equations and then
put them back together, we can see them as natural summaries of an
elegant algorithm.

References
[Dauphin14] Yann Dauphin, Razvan Pascanu, Caglar Gulcehre,

Kyunghyun Cho, Surya Ganguli, Yoshua Bengio, “Identifying
and attacking the saddle point problem in high-dimensional
non-convex optimization”, 2014. http://arxiv.org/abs/1406.2572

[Fullér10] Robert Fullér, “The Delta Learning Rule Tutorial”, Institute
for Advanced Management Systems Research, Department
of Information Technologies, Åbo Adademi University, 2010.
http://uni-obuda.hu/users/fuller.robert/delta.pdf

[Griewank12] Andreas Griewank “Who Invented the Reverse Mode
of Differentiation?”, Documenta Mathematica, Extra Volume
ISMP 389–400, 2012 http://www.math.uiuc.edu/documenta/
vol-ismp/52_griewank-andreas-b.pdf

http://arxiv.org/abs/1406.2572
http://uni-obuda.hu/users/fuller.robert/delta.pdf
http://www.math.uiuc.edu/documenta/vol-ismp/52_griewank-andreas-b.pdf
http://www.math.uiuc.edu/documenta/vol-ismp/52_griewank-andreas-b.pdf

803

Chapter 18: Backpropagation

[Hyde09] Randall Hyde, “The Fallacy of Premature Optimization,”
ACM Ubiquity, 2009. http://ubiquity.acm.org/article.
cfm?id=1513451

[Karpathy15] Andrej Karpathy, “Convolutional Neural Networks for
Visual Recognition”, Stanford CS231n course notes, 2015.
http://cs231n.github.io/optimization-2/

[Karpathy16] Andrej Karpathy, “Yes, You Should Understand
Backprop”, Medium, 2016. https://medium.com/@karpathy/
yes-you-should-understand-backprop-e2f06eab496b

[Khan13] Khan Academy, “Chain rule introduc-
tion”, 2013. https://www.khanacademy.org/math/
ap-calculus-ab/product-quotient-chain-rules-ab/chain-rule-ab/v/
chain-rule-introduction

[Kurenkov15] Andrey, Kurenkov, “A ‘Brief’ History of Neural Nets
and Deep Learning, Part 1”, 2015. http://www.andreykurenkov.
com/writing/a-brief-history-of-neural-nets-and-deep-learning/

[Linnainmaa70] S. Linnainmaa, S., “The Representation of the
Cumulative Rounding Error of an Algorithm as a Taylor
Expansion of the Local Rounding Errors”, Master’s thesis,
University of Helsinki, 1970.

[MathCentre09] Math Centre, “The Chain Rule”, Math Centre report
mc-TY-chain-2009-1, 2009. http://www.mathcentre.ac.uk/
resources/uploaded/mc-ty-chain-2009-1.pdf

[NASA12] NASA, “Astronomers Predict Titanic Collision: Milky Way
vs. Andromeda”, NASA Science Blog, Production editor Dr.
Tony Phillips, 2012. https://science.nasa.gov/science-news/
science-at-nasa/2012/31may_andromeda

[Neilsen15a] Michael A. Nielsen, “Using Neural Networks to
Recognize Handwritten Digits”, Determination Press, 2015.
http://neuralnetworksanddeeplearning.com/chap1.html

http://ubiquity.acm.org/article.cfm?id=1513451
http://ubiquity.acm.org/article.cfm?id=1513451
http://cs231n.github.io/optimization-2/
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://www.khanacademy.org/math/ap-calculus-ab/product-quotient-chain-rules-ab/chain-rule-ab/v/chain-rule-introduction
https://www.khanacademy.org/math/ap-calculus-ab/product-quotient-chain-rules-ab/chain-rule-ab/v/chain-rule-introduction
https://www.khanacademy.org/math/ap-calculus-ab/product-quotient-chain-rules-ab/chain-rule-ab/v/chain-rule-introduction
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-chain-2009-1.pdf
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-chain-2009-1.pdf
https://science.nasa.gov/science-news/science-at-nasa/2012/31may_andromeda
https://science.nasa.gov/science-news/science-at-nasa/2012/31may_andromeda
http://neuralnetworksanddeeplearning.com/chap1.html

804

Chapter 18: Backpropagation

[Neilsen15b] Michael A. Nielsen, “Neural Networks and Deep
Learning”, Determination Press, 2015. http://neuralnetwork-
sanddeeplearning.com/chap2.html

[Rumelhart86] D.E. Rumelhart, G.E. Hinton, R.J. Williams,
“Learning Internal Representations by Error Propagation”,
in “Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1”, pp. 318-362, 1986. http://
www.cs.toronto.edu/~fritz/absps/pdp8.pdf

[Schmidhuber15] Jürgen Schmidhuber, “Who Invented
Backpropagation?”, Blog post, 2015. http://people.idsia.ch/~-
juergen/who-invented-backpropagation.html

[Seung05] Sebastian Seung, “Introduction to Neural Networks”,
MIT 9.641J course notes, 2005. https://ocw.mit.edu/courses/
brain-and-cognitive-sciences/9-641j-introduction-to-neural-net-
works-spring-2005/lecture-notes/lec19_delta.pdf

[Trefethen15] Nick Trefethen, “Who Invented the Great Numerical
Algorithms?” Oxford Mathematical Institute, 2015. https://
people.maths.ox.ac.uk/trefethen/inventorstalk.pdf

[Werbos74] P. Werbos, “Beyond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences”, PhD thesis, Harvard
University, Cambridge, MA, 1974.

[Werbos96] Paul John Werbos, “The Roots of Backpropagation:
From Ordered Derivatives to Neural Networks and Political
Forecasting”, Wiley-Interscience, 1994.

[Wikipedia17] Wikipedia, “Goldilocks and the Three Bears”, 2017.
https://en.wikipedia.org/wiki/Goldilocks_and_the_Three_Bears

http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://www.cs.toronto.edu/~fritz/absps/pdp8.pdf
http://www.cs.toronto.edu/~fritz/absps/pdp8.pdf
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-641j-introduction-to-neural-networks-spring-2005/lecture-notes/lec19_delta.pdf
https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-641j-introduction-to-neural-networks-spring-2005/lecture-notes/lec19_delta.pdf
https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-641j-introduction-to-neural-networks-spring-2005/lecture-notes/lec19_delta.pdf
https://people.maths.ox.ac.uk/trefethen/inventorstalk.pdf
https://people.maths.ox.ac.uk/trefethen/inventorstalk.pdf
https://en.wikipedia.org/wiki/Goldilocks_and_the_Three_Bears

	whythischapterishere
	toc1
	awordonsubtlety
	toc1.1
	averyslowwaytolearn
	toc2
	figure_fig-block-diagram-classifier
	aslowwaytolearn
	toc2.1
	figure_fig-mod-one-weight
	afasterwaytolearn
	toc2.2
	figure_fig-number-line-gradients
	noactivationfunctionsfornow
	toc3
	figure_fig-neuron-no-af
	neuronoutputchangesandnetworkerror
	toc4
	errorschangeproportionally
	toc4.1
	figure_fig-basic-network
	figure_fig-how-delta-works-1
	figure_fig-how-delta-works-2
	atinyneuralnetwork
	toc5
	figure_fig-simple-net
	figure_fig-simple-net-weights
	figure_fig-simple-net-layers
	figure_fig-simple-net-od
	figure_fig-error-delta-visual
	step1:deltasfortheoutputneurons
	toc6
	figure_fig-simple-net-error
	figure_fig-simple-net-errors-range-3-3
	figure_fig-error-for-p2-0
	figure_fig-error-p1-only-4-4
	figure_fig-clipped-error-pair
	figure_fig-error-p1-p2
	figure_fig-c-d-delta
	step2:usingdeltastochangeweights
	toc7
	figure_fig-ac-1
	figure_fig-ac-3
	figure_fig-ac-4
	figure_fig-c-o-delta
	figure_fig-ac-update-basic
	step3:otherneurondeltas
	toc8
	figure_fig-ac-error-1
	figure_fig-ac-error-2
	figure_fig-adc-error
	figure_fig-adc-error-added
	figure_fig-o-delta-arrows
	figure_fig-no-af-h-o
	backpropinaction
	toc9
	figure_fig-bp-net-only
	figure_fig-bp-delta-p1-only
	figure_fig-bp-delta-1
	figure_fig-bp-delta-2
	figure_fig-bp-delta-3
	figure_fig-bp-delta-4
	includingactivationfunctions
	toc10
	figure_fig-af-1
	figure_fig-sigmoid-curve
	figure_fig-af-3
	figure_fig-af-3-small-delta
	figure_fig-sigmoid-and-derivative
	figure_fig-neuron-h-o-delta
	figure_fig-identity-and-derivative
	figure_fig-relu-and-derivative
	thelearningrate
	toc11
	exploringthelearningrate
	toc11.1
	figure_fig-plot-weights-training-data
	figure_fig-moons-network
	figure_fig-plot-weights-graphs-eta-0.500
	figure_fig-plot-weights-graphs-eta-0.050
	figure_fig-plot-weights-decision-boundar
	figure_fig-plot-weights-graphs-eta-0.010
	figure_fig-plot-weights-sorted-history-e
	discussion
	toc12
	backpropinoneplace
	toc12.1
	figure_fig-backprop-quad-summary
	whatbackpropdoesn'tdo
	toc12.2
	whatbackpropdoesdo
	toc12.3
	keepingneuronshappy
	toc12.4
	figure_fig-big-sigmoid-and-derivative
	figure_fig-sigmoid-neuron-a
	figure_fig-sigmoid-neuron-b
	figure_fig-big-relu-and-derivative
	mini-batches
	toc12.5
	parallelupdates
	toc12.6
	whybackpropisattractive
	toc12.7
	backpropisnotguaranteed
	toc12.8
	alittlehistory
	toc12.9
	diggingintothemath
	toc12.10
	references
	toc13
	citation-dauphin14
	citation-fullér10
	citation-griewank12
	citation-hyde09
	citation-karpathy15
	citation-karpathy16
	citation-khan13
	citation-kurenkov15
	citation-linnainmaa70
	citation-mathcentre09
	citation-nasa12
	citation-neilsen15a
	citation-neilsen15b
	citation-rumelhart86
	citation-schmidhuber15
	citation-seung05
	citation-trefethen15
	citation-werbos74
	citation-werbos96
	citation-wikipedia17
	18.1 Why This Chapter Is Here
	18.1.1 A Word On Subtlety
	18.2 A Very Slow Way to Learn
	18.2.1 A Slow Way to Learn
	18.2.2 A Faster Way to Learn

	18.3 No Activation Functions for Now
	18.4 Neuron Outputs and Network Error
	18.4.1 Errors Change Proportionally

	18.5 A Tiny Neural Network
	18.6 Step 1: Deltas for the Output Neurons
	18.7 Step 2: Using Deltas to Change Weights
	18.8 Step 3: Other Neuron Deltas
	18.9 Backprop in Action
	18.10 Using Activation Functions
	18.11 The Learning Rate
	18.11.1 Exploring the Learning Rate

	18.12 Discussion
	18.12.1 Backprop In One Place
	18.12.2 What Backprop Doesn’t Do
	18.12.3 What Backprop Does Do
	18.12.4 Keeping Neurons Happy
	18.12.5 Mini-Batches
	18.12.6 Parallel Updates
	18.12.7 Why Backprop Is Attractive
	18.12.8 Backprop Is Not Guaranteed
	18.12.9 A Little History
	18.12.10 Digging into the Math

	References

