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18.1  Why This Chapter Is Here
This chapter is about training a neural network. The very basic idea is 
appealingly simple. Suppose we’re training a categorizer, which will 
tell us which of several given labels should be assigned to a given input. 
It might tell us what animal is featured in a photo, or whether a bone 
in an image is broken or not, or what song a particular bit of audio 
belongs to. 

Training this neural network involves handing it a sample, and asking 
it to predict that sample’s label. If the prediction matches the label 
that we previously determined for it, we move on to the next sample. 
If the prediction is wrong, we change the network to help it do better 
next time. 

Easily said, but not so easily done. This chapter is about how we 
“change the network” so that it learns, or improves its ability to make 
correct predictions. This approach works beautifully not just for clas-
sifiers, but for almost any kind of neural network. 

Contrast a feed-forward network of neurons to the dedicated classi-
fiers we saw in Chapter 13. Each of those dedicated algorithms had 
a customized, built-in learning method that measured the incoming 
data to provide the information that classifier needed to know. 

But a neural network is just a giant collection of neurons, each doing its 
own little calculation and then passing on its results to other neurons. 
Even when we organize them into layers, there’s no inherent learning 
algorithm. 

How can we train such a thing to produce the results we want? And 
how can we do it efficiently? 
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The answer is called backpropagation, or simply backprop. 
Without backprop, we wouldn’t have today’s widespread use of deep 
learning, because we wouldn’t be able to train our models in reason-
able amounts of time. With backprop, deep learning algorithms are 
practical and plentiful. 

Backprop is a low-level algorithm. When we use libraries to build and 
train deep learning systems, their finely-tuned routines give us both 
speed and accuracy. Except as an educational exercise, or to implement 
some new idea, we’re likely to never write our own code to perform 
backprop. 

So why is this chapter here? Why should we bother knowing about this 
low-level algorithm at all? There are at least four good reasons to have 
a general knowledge of backpropagation. 

First, it’s important to understand backprop because knowledge of 
one’s tools is part of becoming a master in any field. Sailors at sea, and 
pilots in the air, need to understand how their autopilots work in order 
to use them properly. A photographer with an auto-focus camera 
needs to know how that feature works, what its limits are, and how to 
control it, so that she can work with the automated system to capture 
the images she wants. A basic knowledge of the core techniques of any 
field is part of the process of gaining proficiency and developing mas-
tery. In this case, knowing something about backprop lets us read the 
literature, talk to other people about deep learning ideas, and better 
understand the algorithms and libraries we use. 

Second, and more practically, knowing about backprop can help us 
design networks that learn. When a network learns slowly, or not at 
all, it can be because something is preventing backprop from running 
properly. Backprop is a versatile and robust algorithm, but it’s not bul-
letproof. We can easily build networks where backprop won’t produce 
useful changes, resulting in a network that stubbornly refuses to learn. 
For those times when something’s going wrong with backprop, under-
standing the algorithm helps us fix things [Karpathy16]. 
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Third, many important advances in neural networks rely on backprop 
intimately. To learn these new ideas, and understand why they work 
the way they do, it’s important to know the algorithms they’re building 
on. 

Finally, backprop is an elegant algorithm. It efficiently solves a prob-
lem that would otherwise require a prohibitive amount of time and 
computer resources. It’s one of the conceptual treasures of the field. 
As curious, thoughtful people it’s well worth our time to understand 
this beautiful algorithm. 

For these reasons and others, this chapter provides an introduction 
to backprop. Generally speaking, introductions to backprop are pre-
sented mathematically, as a collection of equations with associated 
discussion [Fullér10]. As usual, we’ll skip the mathematics and focus 
instead on the concepts. The mechanics are common-sense at their 
core, and don’t require any tools beyond basic arithmetic and the ideas 
of a derivative and gradient, which we discussed in Chapter 5. 

18.1.1  A Word On Subtlety
The backpropagation algorithm is not complicated. In fact, it’s remark-
ably simple, which is why it can be implemented so efficiently. 

But simple does not always mean easy. 

The backprop algorithm is subtle. In the discussion below, the algo-
rithm will take shape through a process of observations and reasoning, 
and these steps may take some thought. We’ll try to be clear about 
every step, but making the leap from reading to understanding may 
require some work. 

It’s worth the effort. 
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18.2  A Very Slow Way to Learn
Let’s begin with a very slow way to train a neural network. This will 
give us a good starting point, which we’ll then improve. 

Suppose we’ve been given a brand-new neural network consisting of 
hundreds or even tens of thousands of interconnected neurons. The 
network was designed to classify each input into one of 5 categories. 
So it has 5 outputs, which we’ll number 1 to 5, and whichever one has 
the largest output is the network’s prediction for an input’s category. 
Figure 18.1 shows the idea. 

Figure 18.1: A neural network predicting the class of an input sample. 

Starting at the bottom of Figure 18.1, we have a sample with four fea-
tures and a label. The label tells us that the sample belongs to category 
3. The features go into a neural network which has been designed to 
provide 5 outputs, one for each class. In this example, the network has 
incorrectly decided that the input belongs to class 1, because the larg-
est output, 0.9, is from output number 1. 
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Consider the state of our brand-new network, before it has seen any 
inputs. As we know from Chapter 16, each input to each neuron has 
an associated weight. There could easily be hundreds of thousands, 
or many millions, of weights in our network. Typically, all of these 
weights will have been initialized with small random numbers. 

Let’s now run one piece of labeled training data through the net, as 
in Figure 18.1. The sample’s features go into the first layer of neurons, 
and the outputs of those neurons go into more neurons, and so on, 
until they finally arrive at the output neurons, when they become the 
output of the network. The index of the output neuron with the largest 
value is the predicted class for this sample. 

Since we’re starting with random numbers for our weights, we’re likely 
to get essentially random outputs. So there’s a 1 in 5 chance the net-
work will happen to predict the right label for this sample. But there’s 
a 4 in 5 chance it’ll get it wrong, so let’s assume that the network pre-
dicts the wrong category. 

When the prediction doesn’t match the label, we can measure the error 
numerically, coming up with a single number to tell us just how wrong 
this answer is. We call this number the error score, or error, or 
sometimes the loss (if the word “loss” seems like a strange synonym 
for “error,” it may help to think to think of it as describing how much 
information is “lost” if we categorize a sample using the output of the 
classifier, rather than the label.). 

The error (or loss) is a floating-point number that can take on any 
value, though often we set things up so that it’s always positive. The 
larger the error, the more “wrong” our network’s prediction is for the 
label of this input. 

An error of 0 means that the network predicted this sample’s label cor-
rectly. In a perfect world, we’d get the error down to 0 for every sample 
in the training set. In practice, we usually settle for getting as close as 
we can. 
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Let’s briefly recap some terminology from previous chapters. When we 
speak of “the network’s error” with respect to a training set, we usu-
ally mean some kind of overall average that tells us how the network 
is doing when taking all the training samples into consideration. We 
call this the training error, since it’s the overall error we get from 
predicting results from the training set. Similarly, the error from the 
test or validation data is called the test error or validation error. 
When the system is deployed, a measure of the mistakes it makes on 
new data is called the generalization error, because it represents 
how well (or poorly) the system manages to “generalize” from its train-
ing data to new, real-world data. 

A nice way to think about the whole training process is to anthropo-
morphize the network. We can say that it “wants” to get its error down 
to zero, and the whole point of the learning process is to help it achieve 
that goal. 

One advantage of this way of thinking is that we can make the net-
work do anything we want, just by setting up the error to “punish” any 
quality or behavior that we don’t want. Since the algorithms we’ll see 
in this chapter are designed to minimize the error, we know that any-
thing about the network’s behavior that contributes to the error will 
get minimized. 

The most natural thing to punish is getting the wrong answer, so the 
error almost always includes a term that measures how far the output 
is from the correct label. The worse the match between the prediction 
and the label, the bigger this term will be. Since the network wants to 
minimize the error, it will naturally minimize such mistakes. 

This approach of “punishing” the network through the error score 
means we can choose to include terms in the error for anything we can 
measure and want to suppress. For example, another popular mea-
sure to add into the error is a regularization term, where we look 
at the magnitude of all the weights in the network. As we’ll see later in 
this chapter, we usually want those weights to be “small,” which often 
means between −1 and 1. As the weights move beyond this range, we 
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add a larger number to the error. Since the network “wants” the small-
est error possible, it will try to keep the weights small so that this term 
remains small. 

All of this raises the natural question of how on earth the network is 
able to accomplish this goal of minimizing the error. That’s the point 
of this chapter. 

Let’s start with a basic error measure that only punishes a mismatch 
between the network’s prediction and the label. 

Our first algorithm for teaching the network will be just a thought 
experiment, since it would be absurdly slow on today’s computers. 
But the motivation is right, and this slow algorithm will form the con-
ceptual basis for the more efficient techniques we’ll see later in this 
chapter. 

18.2.1  A Slow Way to Learn
Let’s stick with our running example of a classifier. We’ll give the net-
work a sample and compare the system’s prediction with the sample’s 
label. 

If the network got it right and predicted the correct label, we won’t 
change anything and we’ll move on to the next sample. As the wise 
man said, “If it ain’t broke, don’t fix it” [Seung05]. 

But if the result for a particular sample is incorrect (that is, the cate-
gory with the highest value does not match our label), we will try to 
improve things. That is, we’ll learn from our mistakes. 

How do we learn from this mistake? Let’s stick with this sample for 
a while and try to help the network do a better job with it. First, we’ll 
pick a small random number (which might be positive or negative). 
Now we’ll pick one weight at random from the thousands or millions 
of weights in the network, and we’ll add our small random value to 
that weight. 



713

Chapter 18: Backpropagation

Now we’ll evaluate our sample again. Everything up to that change will 
be the same as before. But there will be a chain reaction of changes 
in the outputs of the neurons starting at the weight we modified. The 
new weight will produce a new input for the neuron that uses that 
input, which will change that neuron’s output value, which will change 
the output of every neuron that uses that output, which will change 
the output of every neuron that uses any of those outputs, and so on. 
Figure 18.2 shows this idea graphically. 

Figure 18.2: Updating a single weight causes a chain reaction that ulti-
mately can change the network’s outputs. 

Figure 18.2 shows a network of 5 layers with 3 neurons each. Data 
flows from the inputs at the left to the outputs at the right. For simplic-
ity, not every neuron uses the output of every neuron on the previous 
layer. In part (a) we select one weight at random, here shown in red 
and marked w. In part (b) we modify the weight by adding a value m 
to it, so the weight is now w+m. When we run the sample through the 
network again, as shown in part (c), the new weight causes a change 
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in the output of the neuron it feeds into (in red). The output of that 
neuron changes as a result, which causes the neurons it feeds into to 
change their outputs, and the changes cascade all the way to the out-
put layer. 

Now that we have a new output, we can compare it to the label and 
measure the new error. If the new error is less than the previous error, 
then we’ve made things better! We’ll keep this change, and move on to 
the next sample. 

But if the results didn’t get better then we’ll undo this change, restor-
ing the weight back to its previous value. We’ll then pick a new random 
weight, change it by a newly-selected small random amount, and eval-
uate the network again. 

We can continue this process of picking and nudging weights until the 
results improve, or we decide we’ve tried enough times, or for any other 
reason we decide to stop. Then we just move on to the next sample. 

When we’ve used all the samples in our training set, we’ll just go 
through them all again (maybe in a different order), over and over. 
The idea is that we’ll improve a little bit from every mistake. 

We can continue this process until the network classifies every input 
correctly, or we’ve come close enough, or our patience is exhausted. 

With this technique, we would expect the network to slowly improve, 
though there may be setbacks along the way. For example, adjusting a 
weight to improve one sample’s prediction might ruin the prediction 
for one or more other samples. If so, when those samples come along 
they will cause their own changes to improve their performance. 

This thought algorithm isn’t perfect, because things could get stuck. 
For example, there might be times when we need to adjust more than 
one weight simultaneously. To fix that, we can imagine extending our 
algorithm to assign multiple random changes to multiple random 
weights. But let’s stick with the simpler version for now. 
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Given enough time and resources, the network would eventually find 
a value for every weight that either predicts the right answer for every 
sample, or it comes as close as that network possibly can. 

The important word in that last sentence is eventually. As in, “The 
water will boil, eventually,” or “The Andromeda galaxy will collide with 
our Milky Way galaxy, eventually” [NASA12]. 

This technique, while a valid way to teach a network, is definitely not 
practical. Modern networks can have millions of weights. Trying to 
find the best values for all those weights with this algorithm is just not 
realistic. 

But this is the core idea. To train our network, we’ll watch its output, 
and when it makes mistakes, we’ll adjust the weights to make those 
mistakes less likely. Our goal in this chapter will be to take this rough 
idea and re-structure it into a vastly more practical algorithm. 

Before we move on, it’s worth noting that we’ve been talking about 
weights, but not the bias term belonging to every neuron. We know 
that every neuron’s bias gets added in along with the neuron’s weighted 
inputs, so changing the bias would also change the output. Doesn’t that 
mean that we want to adjust the bias values as well? We sure do. But 
thanks to the bias trick we saw in Chapter 10, we don’t have to think 
about the bias explicitly. That little bit of relabeling sets up the bias 
to look like an input with its own weight, just like all the other inputs. 
The beauty of this arrangement is that it means that as far as our train-
ing algorithm is concerned, the bias is just another weight to adjust. In 
other words, all we need to think about is adjusting weights, and the 
bias weights will automatically get adjusted along the way with all the 
other weights. 

Let’s now consider how we might improve our incredibly slow 
weight-changing algorithm. 
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18.2.2  A Faster Way to Learn
The algorithm of the last section would improve our network, but at a 
glacial pace. 

One big source of inefficiency is that half of our adjustments to the 
weights are in the wrong direction: we add a value when we should 
instead have subtracted it, and vice-versa. That’s why we had to undo 
our changes when the error went up. Another problem is that we tuned 
each weight one by one, requiring us to evaluate an immense number 
of samples. Let’s solve these problems. 

We could avoid making mistakes if we knew beforehand whether we 
wanted to nudge each weight along the number line to the right (that 
is, make it more positive) or to the left (and make it more negative). 

We can get exactly that information from the gradient of the error 
with respect to that weight. Recall that we met the gradient in Chapter 
5, where it told us how the height of a surface changes as each of its 
parameters changes. Let’s narrow that down for the present case. In 
1D (where the gradient is also called the derivative), the gradient is 
the slope of a curve above a specific point. Our curve describes the net-
work’s error, and our point is the value of a weight. If the slope of the 
error (the gradient) above the weight is positive (that is, the line goes 
up as we move to the right), then moving the point to the right will 
cause the error to go up. More useful to us is that moving the point to 
the left will cause the error to go down. If the slope of the error is neg-
ative, the situations are reversed. 

Figure 18.3 shows two examples. 
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Figure 18.3: The gradient tells us what will happen to the error (the black 
curves) if we move a weight to the right. The gradient is given by the 
slope of the curve directly above the point we’re interested in. Lines that 
go up as we move right have a positive slope, otherwise they are negative. 

In Figure 18.3(a), we see that if we move the round weight to the right, 
the error will increase, because the slope of the error is positive. To 
reduce the error, we need to move the round point left. The square 
point’s gradient is negative, so we reduce the error by moving that 
point right. Part (b) shows the gradient for the round point is negative, 
so moving to the right will reduce the error. The square point’s gradi-
ent is positive, so we reduce the error by moving that point to the left. 

If we had the gradient for a weight, we could always adjust it exactly as 
needed to make the error go down. 

Using the gradients wouldn’t be much of an advantage if they were 
time-consuming to compute, so as our second improvement let’s sup-
pose that we can calculate the gradients for the weights very efficiently. 
In fact, let’s suppose that we could quickly calculate the gradient for 
every weight in the whole network. Then we could update all of the 
weights simultaneously by adding a small value (positive or negative) 
to each weight in the direction given by its own individual gradient. 
That would be an immense time-saver. 
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Putting these together gives us a plan where we’ll run a sample through 
the network, measure the output, compute the gradient for every 
weight, and then use the gradient at each weight to move that weight 
to the right or the left. This is exactly what we’re going to do. 

This plan makes knowing the gradient an important issue. Finding the 
gradient efficiently is the main goal of this chapter. 

Before we continue, it’s worth noticing that this algorithm makes the 
assumption that tweaking all the weights independently and simulta-
neously will lead to a reduction in the error. This is a bold assumption, 
because we’ve already seen how changing one weight can cause ripple 
effects through the rest of the network. Those effects could change the 
values of other neurons, which in turn would change their gradients. 
We won’t get into the details now, but we’ll see later that if we make 
the changes to the weights small enough, that assumption will gener-
ally hold true, and the error will indeed go down. 

18.3  No Activation Functions for 
Now
For the next few sections in this chapter, we’re going to simplify the dis-
cussion by pretending that our neurons don’t have activation functions. 

As we saw in Chapter 17, activation functions are essential to keep our 
whole network from becoming nothing more than the equivalent of a 
single neuron. So we need to use them. 

But if we include them in our initial discussion of backprop, things 
will get complicated, fast. If we leave activation functions out for just 
a moment, the logic is much easier to follow. We’ll put them back in 
again at the end. 
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Since we’re temporarily pretending that there are no activation func-
tions in our neurons, neurons in the following discussions just sum 
up their weighted inputs, and present that sum as their output, as in 
Figure 18.4. As before, each weight is named with a two-letter compos-
ite of the neuron it’s coming from and the neuron it’s going into. 

Figure 18.4: Neuron D simply sums up its incoming values, and presents 
that sum as its output. Here we’ve explicit named the weights on each 
connection into neuron D. 

Until we put explicitly put activation functions back in, our neurons 
will emit nothing more than the sum of their weighted inputs. 

18.4  Neuron Outputs and Network 
Error
Our goal is to reduce the overall error for a sample, by adjusting the 
network’s weights. 

We’ll do this in two steps. In the first step, we calculate and store a 
number called the “delta” for every neuron. This number is related to 
the network’s error, as we’ll see below. This step is performed by the 
backpropagation algorithm. 
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The second step uses those delta values at the neurons to update the 
weights. This step is called the update step. It’s not typically consid-
ered part of backpropagation, but sometimes people casually roll the 
two steps together and call the whole thing “backpropagation.” 

The overall plan now is to run a sample through the network, get the 
prediction, and compare that prediction to the label to get an error. If 
their error is greater than 0, we use it to compute and store a number 
we’ll call “delta” at every neuron. We use these delta values and the 
neuron outputs to calculate an update value for each weight. The final 
step is to apply every weight’s individual update so that it takes on a 
new value. 

Then we move on to the next sample, and repeat the process, over and 
over again until the predictions are all perfect or we decide to stop. 

Let’s now look at this mysterious “delta” value that we store at each 
neuron. 

18.4.1  Errors Change Proportionally
There are two key observations that will make sense of everything to 
follow. These are both based on how the network behaves when we 
ignore the activation functions, which we’re doing for the moment. As 
promised above, we’ll put them back in later in this chapter. 

The first observation is this: When any neuron output in our network 
changes, the output error changes by a proportional amount. 

Let’s unpack that statement. 

Since we’re ignoring activation functions, there are really only two 
types of values we care about in the system: weights (which we can set 
and change as we please), and neuron outputs (which are computed 
automatically, and which are beyond our direct control). Except for 
the very first layer, a neuron’s input values are each the output of a 
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previous neuron times the weight of the connection that output travels 
on. Each neuron’s output is just the sum of all of these weighted inputs. 
Figure 18.5 recaps this idea graphically. 

Figure 18.5: A small neural network with 11 neurons organized in 4 layers. 
Data flows from the inputs at the left to the outputs at the right. Each 
neuron’s inputs come from the outputs of the neurons on the previous 
layer. This type of diagram, though common, easily becomes dense and 
confusing, even with color-coding. We will avoid it when possible. 

We know that we’ll be changing weights to improve our network. But 
sometimes it’s easier to think about looking at the change in a neuron’s 
output. As long as we keep using the same input, the only reason a neu-
ron’s output can change is because one of its weights has changed. So 
in the rest of this chapter, any time we speak of the result of a change 
in a neuron’s output, that came about because we changed one of the 
weights that neuron depended on. 

Let’s take this point of view now, and imagine we’re looking at a neu-
ron whose output has just changed. What happens to the network’s 
error as a result? Because the only operations that are being carried 
out in our network are multiplication and addition, if we work through 
the numbers we’ll see that the result of this change is that the change 
in the error is proportional to the change in the neuron’s output. 
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In other words, to find the change in the error, we find the change in 
the neuron’s output and multiply that by some particular value. If we 
double the amount of change in the neuron’s output, we’ll double the 
amount of change in the error. If we cut the neuron’s output change by 
one-third, we’ll cut the change in the output by one-third. 

The connection between any change in the neuron’s output and the 
resulting change in the final error is just the neuron’s change times 
some number. This number goes by various names, but the most popu-
lar is probably the lower-case Greek letter δ (delta), though sometimes 
the upper-case version, Δ, is used. Mathematicians often use the delta 
character to mean “change” of some sort, so this was a natural (if terse) 
choice of name. 

So every neuron has a “delta,” or δ, associated with it. This is a real 
number that can be big or small, positive or negative. If the neuron’s 
output changes by a particular amount (that is, it goes up or down), 
we multiply that change by that neuron’s delta, and that tells us how 
the entire network’s output will change. 

Let’s draw a couple of pictures to show the “before” and “after” con-
ditions of a neuron whose output changes. We’ll change the output of 
the neuron using brute force: we’ll add some arbitrary number to the 
summed inputs just before that value emerges as the neuron’s output. 
As in Figure 18.2, we’ll use the letter m (for “modification”) for this 
extra value. 

Figure 18.6 shows the idea graphically.
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Figure 18.6: Computing the change in the error due to a change in a 
neuron’s output. Here we’re forcing a change in the neuron’s output by 
adding an arbitrary amount m to the sum of the inputs. Because the 
output will change by m, we know the change in the error is this differ-
ence m times the value of δ belonging to this neuron. 

In Figure 18.6 we placed the value m inside the neuron. But we can 
also change the output by changing one of the inputs. Let’s change the 
value that’s coming in from neuron B. We know that the output of B 
will get multiplied by the weight BD before it’s used by neuron D. So 
let’s add our value m right after that weight has been applied. This will 
have the same result as before, since we’re just adding m to the overall 
sum that emerges from D. Figure 18.7 shows the idea. We can find the 
change in the output like before, multiplying this change m in the out-
put by δ. 
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Figure 18.7: A variation of Figure 18.6, where we add m to the output of B 
(after it has been multiplied by the weight BD). The output of D is again 
changed by m, and the change in the error is again m times this neuron’s 
value of δ. 

To recap, if we know the change in a neuron’s output, and we know the 
value of delta for that neuron, then we can predict the change in the 
error by multiplying that change in the output by that neuron’s delta. 

This is a remarkable observation, because it shows us explicitly how 
the error changes based on the change in output of each neuron. The 
value of delta acts like an amplifier, making any change in the neuron’s 
output have a bigger or smaller effect on the network’s error. 

An interesting result of multiplying the neuron’s change in output with 
its delta is that if the change in the output and the value of delta both 
have the same sign (that is, both are positive or negative), then the 
change in the error will be positive, meaning that the error will increase. 
If the change in the output and delta have opposite signs (that is, one 
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is negative and one is positive), then the change in the error will be 
negative, meaning that the error will decrease. That’s the case we want, 
since our goal is always to make the error as small as possible. 

For instance, suppose that neuron A has a delta of 2, and for some 
reason its output changes by −2 (say, changing from 5 to 3). Since the 
delta is positive and the change in output is negative, the change in 
the error will also be negative. In numbers, 2×−2=−4, so the error will 
drop by 4. 

On the other hand, suppose the delta of A is −2, and its output changes 
by +2 (say from 3 to 5). Again, the signs are different, so the error will 
change by −2×2=−4, and again the error will reduce by 4. 

But if the change in A’s output is −2, and the delta is also −2, then the 
signs are the same. Since −2×−2=4, the error will increase by 4. 

At the start of this section we said there were two key observations we 
wanted to note. The first, as we’ve been discussing, is that if a neuron’s 
output changes, the error changes by a proportional amount. 

The second key observation is: this whole discussion applies just as 
well to the weights. After all, the weights and the outputs are multi-
plied together. When we multiply two arbitrary numbers, such as a 
and b, then we make the result bigger by adding something to either 
the value of a or b. In terms of our network, we can say that when any 
weight in our network changes, the error changes by a proportional 
amount. 

If we wanted, we could work out a delta for every weight. And that 
would be perfect. We would know just how to tweak each weight to 
make the error go down. We just add in a small number whose sign is 
opposite that of the weight’s delta. 

Finding those deltas is what backprop is for. We find them by first 
finding the delta for every neuron’s output. We’ll see below that with a 
neuron’s delta, and its output, we can find the weight deltas. 
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We already know every neuron’s outputs, so let’s turn our attention to 
finding those neuron deltas. 

The beauty of backpropagation is that finding those values is incredi-
bly efficient. 

18.5  A Tiny Neural Network
To get a handle on backprop, we’ll use a tiny network that classifies 
2D points into two categories, which we’ll call class 1 and class 2. If 
the points can be separated by a straight line then we could do this job 
with just one perceptron, but we’ll use a little network because it lets 
us see the general principles. 

In this section we’ll look at the network and give a label to everything 
we care about. That will make later discussions simpler and easier to 
follow. 

Figure 18.8 shows our network. The inputs are the X and Y coordi-
nates of each point, there are four neurons, and the outputs of the last 
two serve as the outputs of the network. We call their outputs the pre-
dictions P1 and P2. The value of P1 is the network’s prediction of the 
likelihood that our sample (that is, the X and Y at the input) belongs 
to class 1, and P2 is its prediction of the likelihood that the sample 
belongs to class 2. These aren’t actually probabilities because they 
won’t necessarily add up to 1, but whichever is larger is the network’s 
preferred choice of category for this input. We could make them into 
probabilities (by adding a softmax layer, as discussed in Chapter 17), 
but that would just make the discussion more complicated without 
adding anything useful.  
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Figure 18.8: A simple network. The input has two features, which we 
call X and Y. There are four neurons, ending with two predictions, P1 and 
P2. These predict the likelihoods (not the probabilities) that our sample 
belongs to class 1 or class 2, respectively. 

Let’s label the weights. As usual, we’ll imagine that the weights are sit-
ting on the wires that connect neurons, rather than stored inside the 
neurons. The name of each weight will be the name of the neuron pro-
viding that value at its output followed by the neuron using that value 
as input. Figure 18.9 shows the names of all 8 weights in our network.
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Figure 18.9: Giving names to each of the 8 weights in our tiny network. 
Each weight is just the name of the two neurons it connects, with the 
starting neuron (on the left) first, and then the destination neuron (on 
the right) second. For the sake of consistency, we pretend that X and Y 
are “neurons” when it comes to naming the weights, so XA is the name of 
the weight that scales the value of X going into neuron A. 

This is a tiny deep-learning network with two layers. The first 
layer contains neurons A and B, and the second contains neurons C 
and D, as shown in Figure 18.10. 
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Figure 18.10: Our tiny neural network has 2 layers. The input layer doesn’t 
do any computing, so it’s usually not included in the layer count. 

Two layers is not a terribly deep network, and two neurons per layers 
is not a lot of computing power. We usually work with systems with 
more layers, and more neurons on each layer. Determining how many 
layers we should use for a given task, and how many neurons should 
be on each layer, is something of an art and an experimental science. 
In essence, we usually take a guess at those values, and then vary our 
choices to try to improve the results. 

In Chapter 20 we’ll discuss deep learning and its terminology. Let’s 
jump ahead a little bit here and use that language for the various pieces 
of the network in Figure 18.10. The input layer is just a conceptual 
grouping of the inputs X and Y. These don’t correspond to neurons, 
because these are just pieces of memory for storing the features in the 
sample that’s been given to the network. When we count up the layers 
in a network, we don’t usually count the input layer. 

The hidden layer is called that because neurons A and B are “inside” 
the network, and thus “hidden” from a viewer on the outside, who can 
see only the inputs and outputs. The output layer is the set of neu-
rons that provide our outputs, here P1 and P2. These layer names are 
a little asymmetrical because the input layer has no neurons, and the 
output layer does, but they’re how the convention has developed. 
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Finally, we’ll want to refer to the output and delta for every neuron. 
For this, we’ll make little two-letter names by combining the neuron’s 
name with the value we want to refer to. So Ao and Bo will be the 
names of the outputs of neurons A and B, and Aδ and Bδ will be the 
delta values for those two neurons. 

Figure 18.11 shows these values stored with their neurons. 

Figure 18.11: Our simple network with the output and delta values for 
each neuron. 

We’ll be watching what happens when neuron outputs change, causing 
changes to the error. We’ll label the change in the output of neuron A 
as Am. We’ll label the error simply E, and a change to the error as Em. 

As we saw above, if we have a change Am in the output of neuron A, 
then multiplying that change by Aδ gives us the change in the error. 
That is, the change Em is given by Am×Aδ. We’ll think of the action 
of Aδ as multiplying, or scaling, the change in the output of neuron A, 
giving us the corresponding change in the error. Figure 18.12 shows 
the schematic setup we’ll use for visualizing the way changes in a neu-
ron’s output are scaled by its delta to produce changes to the error. 
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Figure 18.12: Our schematic for visualizing how changes in a neuron’s 
output can change the network’s error. Read the diagram roughly left to 
right. 

At the left of Figure 18.12 we start with a neuron A. It starts with value 
Ao, but we change one of the weights on its inputs so that the output 
goes up by Am. The arrow inside the box for Am shows that this change 
is positive. This change is multiplied by Aδ to give us Em, the change 
in the error. We show Aδ as a wedge, illustrating the amplification of 
Em. Adding this change to the previous value of the error, E, gives us 
the new error E+Em. In this case, both Am and Aδ are positive, so the 
change in the error Am×Aδ is also positive, increasing the error. 

Keep in mind that the delta value Aδ relates a change in a neuron’s 
output to a change in the error. These are not relative or percentage 
changes, but the actual amounts. So if the output of A goes from 3 to 
5, that’s a change of 2, so the change in the error would be Aδ×2. If the 
output of A goes from 3000 to 3002, that’s still a change of 2, and the 
error would change by the same amount, Aδ×2. 

Now that we’ve labeled everything, we’re finally ready to look at the 
backpropagation algorithm. 
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18.6  Step 1: Deltas for the Output 
Neurons
Backpropagation is all about finding the delta value for each neuron. 
To do that, we’ll find gradients of the error at the end of the network, 
and then propagate, or move, those gradients back to the start. So we’ll 
begin at the end: the output layer. 

The outputs of neuron C and D in our tiny network give us the likeli-
hoods that the input is in class 1 or class 2, respectively. In a perfect 
world, a sample that belongs to group 1 would produce a value of 1.0 
for P1 and 0.0 for P2, meaning that the system is certain that it belongs 
to class 1 and simultaneously certain that it does not belong to class 2. 

If the system’s a little less certain, we might get P1=0.8 and P2=0.1, tell-
ing us that it’s much more likely that the sample is in class 1 (remember 
that these aren’t probabilities, so they probably won’t sum to 1). 

We’d like to come up with a single number to represent the network’s 
error. To do that, we’ll compare the values of P1 and P2 with the label 
for this sample. 

The easiest way to make that comparison is if the label is one-hot 
encoded, as we saw in Chapter 12. Recall that one-hot encoding 
makes a list of numbers as long as the number of classes, and puts a 0 
in every entry. Then it puts a 1 in the entry corresponding to the cor-
rect class. In our case, we have only two classes, so the encoder would 
always start with list of two zeros, which we can write as (0, 0). For a 
sample that belongs to class 1, it would put a 1 in the first slot, giving 
us (1, 0). A sample from class 2 would get the label (0, 1). Sometimes 
such a label is also called a target. 
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Let’s put the predictions P1 and P2 into a list as well: (P1, P2). Now 
we can just compare the lists. There are lots of ways to do this. For 
example, a simple way would be to find the difference between corre-
sponding elements from each list and then add up those differences. 
Figure 18.13 shows the idea. 

Figure 18.13: To find the error from a specific sample, we start by 
supplying the sample’s features X and Y to the network. The outputs are 
the predictions P1 and P2, telling us the likelihoods that the sample is in 
class 1 and class 2, respectively. We compare those predictions with the 
one-hot encoded label, and from that come up with a number repre-
senting the error. If the predictions match the label perfectly, the error is 
0. The bigger the mismatch, the bigger the error. 

If the prediction list is identical to the label list, then the error is 0. If 
the two lists are close (say, (0.9, 0.1) and (1, 0)), then we’d want to come 
up with an error number that’s bigger than 0, but maybe not enor-
mous. As the lists become more and more different, the error should 
increase. The maximum error would come if the network is absolutely 
wrong, for example predicting (1, 0) when the label says (0, 1). 

There are many formulas for calculating the network error, and most 
libraries let us choose among them. We’ll see in Chapters 23 and 24 
that this error formula is one of the critical choices that defines what 
our network is for. For instance, we’ll choose one type of error formula 
if we’re building a network to classify inputs into categories, another 
type of formula if our network is for predicting the next value in a 
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sequence, and yet another type of formula if we’re trying to match the 
output of some other network. These formulas can be mathematically 
complex, so we won’t go into those details here. 

As Figure 18.13 shows, that formula for our simple network takes in 4 
numbers (2 from the prediction and 2 from the label), and produces a 
single number as a result. 

But all the error formulas share the property that when they compare 
a classifier’s output to the label, a perfect match will give a value of 0, 
and increasingly incorrect matches will give increasingly large errors. 

For each type of error formula, our library function will also provide 
us with its gradient. The gradient tells us how the error will change 
if we increase any one of the four inputs. This may seem redundant, 
since we know that we want the outputs to match the label, so we can 
tell how the outputs should change just by looking at them. But recall 
that the error can include other terms, like the regularization term we 
discussed above, so things can get more complicated. 

In our simple case, we can use the gradient to tell us whether we’d like 
the output of C to go up or down, and the same for D. We’ll pick the 
direction for each neuron that causes the error to decrease. 

Let’s think about drawing our error. We could also draw the gradient, 
but usually that’s harder to interpret. When we draw the error itself, 
we can usually see the gradient just by looking at the slope of the error. 

Unfortunately, we can’t draw a nice picture of the error for our little 
network because it would require five dimensions (four for the inputs 
and one for the output). But things aren’t so bad. We don’t care about 
how the error changes when the label changes, because the label can’t 
change. For a given input, the label is fixed. So we can ignore the two 
dimensions for the labels. That leaves us with just 3 dimensions. 

And we can draw a 3D shape! So let’s plot the error. Remember that 
we can visualize the gradient at any point just by imagining which way 
a drop of water would flow if we placed it on the surface of the error 
above that location. 
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Let’s draw a 3D diagram that shows the error for any set of values P1 
and P2, for a given label. That is, we’ll set the value of the label, and 
explore the error for different values of P1 and P2. Every error formula 
will give us a somewhat different surface, but most will look roughly 
like Figure 18.14. 

Figure 18.14: Visualizing the error of our network, given a label (or target) 
and our two predictions, P1 and P2. Top row: The label is (0, 1), so the error 
is a bowl with its bottom at P1 = 0 and P2 = 1. As P1 and P2 diverge from 
those values, the error goes up. Left: The error for each value of P1 and 
P2. Right: A top-down view of the surface at the left, showing the height 
using colored contours. Bottom row: The label is (1, 0), so now the error is 
a bowl with the bottom at P1 = 1 and P2 = 0. 
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For both labels, the shape of the error surface is the same: a bowl with 
a rounded bottom. The only difference is the location of the bottom of 
the bowl, which is directly over the label. This makes sense, because 
our whole intention is to get P1 and P2 to match the label. When they 
do, we have zero error. So the bottom of the bowl has a value of 0, and 
it sits right on top of the label. The more different P1 and P2 are from 
the label, the more the error grows. 

These plots let us make a connection between the gradient of this error 
surface and the delta values for the output layer neurons C and D. It 
will help to remember that P1, the likelihood of the sample belonging 
to class 1, is just another name for the output of C, which we also call 
Co. Similarly, P2 is another name for Do. So if we say that we want to 
see a specific change in the value of P1, we’re saying that we want the 
output of neuron C to change in that way, and the same is true for P2 
and D. 

Let’s look at one of these error surfaces a little more carefully so we can 
really get a feeling for it. Suppose we have a label of (1,0), like in the 
bottom row of Figure 18.14. Let’s suppose that for a particular sam-
ple, output P1 has the value −1, and output P2 has the value 0. In this 
example, P2 matches the label, but we want P1 to change from −1 to 1. 

Since we want to change P1 while leaving P2 alone, let’s look at the 
part of the graph that tells us how the error will change by doing just 
that. We’ll set P2=0 and look at the cross-section of the bowl for dif-
ferent values of P1. We can see it follows the overall bowl shape, as in 
Figure 18.15.
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Figure 18.15: Slicing away the error surface from the bottom left of Figure 
18.14, where the label is (1,0). The revealed cross-section of the surface 
shows us the values of the error for different values of P1 when P2 = 0. 

Let’s look just at this slice of the error surface, shown in Figure 18.16. 

Figure 18.16: Looking at the cross-section of the error function shown in 
Figure 18.15, we can see how the error depends on different values of P1, 
when P2 is fixed at 0. 



738

Chapter 18: Backpropagation

In Figure 18.16 we’ve marked the value P1= −1 with an orange dot, and 
we’ve drawn the derivative at the location on the curve directly above 
this value of P1. This tells us that if we make P1 more positive (that is, 
we move right from −1), the error in the network will decrease. But if 
we go too far and increase P1 beyond the value of 1, the error will start 
to increase again. The derivative is just the piece of the gradient that 
applies to only P1, and tells us how the error changes as the value of P1 
changes, for these values of P2 and the label. As we can see from the 
figure, if we get too far away from −1 the derivative no longer matches 
the curve, but close to −1 it does a good job. 

We’ll come back to this idea again later: the derivative of a curve tells 
us what happens to the error if we move P1 by a very small amount 
from a given location. The smaller the move, the more accurate the 
derivative will be at predicting our new error. This is true for any deriv-
ative, or any gradient. 

We can see this characteristic in Figure 18.16. If we move P1 by 1 unit to 
the right from −1, the derivative (in green) would land us at an error of 
0, though it looks like the error for P1=0 (the value of the black curve) 
is really about 1. We can use the derivative to predict the results for 
large changes in P1, but our accuracy will go down the farther we move, 
as we just saw. In the interests of clear figures that are easy to read, 
we’ll sometimes make large moves when the difference between where 
the derivative would land us, and where the real error curve tells us we 
should be, are close enough. 

Let’s use the derivative to predict the change in the error due to a 
change in P1. What’s the slope of the green line in Figure 18.16? The 
left end is at about (−2, 8), and the right end is at about (0,0). Thus the 
line descends about 4 units for every 1 unit we move to the right, for a 
slope of −4/1 or −4. So if P1 changed by 0.5 (that is, it changed from −1 
to −0.5), we’d predict that the error would go down by 0.5×−4=−2. 

That’s it! That’s the key observation that tells us the value of Cδ. 
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Remember that P1 is just another name for Co, the output of C. We’ve 
found that a change of 1 in Co results in a change of −4 in the error. As 
we discussed, we shouldn’t have too much confidence in this predic-
tion after such a big change in P1. But for small moves, the proportion 
is right. For instance, if we were to increase P1 by 0.01, then we’d 
expect the error to change by −4×0.01=−0.04, and for such a small 
change in P1 the predicted change in the error should be pretty accu-
rate. If we increased P1 by 0.02, then we’d expect the error to change 
by −4×0.02=−0.08. If we move P1 to the left, so it changed from −1 to, 
say, −1.1 we’d expect the error to change by −0.1×−4=0.4, so the error 
would increase by 0.4. 

We’ve found that for any amount of change in Co, we can predict the 
change in the error by multiplying Co by −4. 

That’s exactly what we’ve been looking for! The value of Cδ is −4. Note 
that this only holds for this label, and these values of Co and Do (or P1 
and P2). 

We’ve just found our first delta value, telling us how much the error 
will change if there’s a change to the output of C. It’s just the derivative 
of the error function measured at P1 (or Co). 

Figure 18.17 shows what we’ve just described using our error diagram.
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Figure 18.17: Our error diagram illustrating the change in the error from 
a change in the output of neuron C. The original output is the green bar 
at the far left. We imagine that due to a change in the inputs, the output 
of C increases by an amount Cm. This is amplified by multiplying it with 
Cδ, giving us the change in the error, Em. That is, Em=Cm×Cδ. Here the 
value of Cm is about 1/4 (the upward arrow in the box for Cm tells us that 
the change is positive), and the value of Cδ is −4 (the arrow in that box 
tells us the value is negative). So Em=−4×1/4=−1. The new error, at the far 
right, is the previous error plus Em. 

Remember that at this point we’re not going to do anything with this 
delta value. Our goal right now is just to find the deltas for our neu-
rons. We’ll use them later. 

We assumed above that P2 already had the right value, and we only 
needed to adjust P1. But what if they were both different than their 
corresponding label values? 

Then we’d repeat this whole process for P2, to get the value of Dδ, or 
delta for neuron D. Let’s do just that. 

In Figure 18.18 we can see the slices of the error for an input with a 
corresponding label, or target, of (1,0) when P1 = −0.5, and P2 = 1.5. 
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Figure 18.18: Slicing our error function when both P1 and P2 are different 
from the label. Left: The error due to different values of P1 when P2=1.5. 
Right: The error due to different values of P2 when P1 = −0.5. 

The cross-section curves are shown in Figure 18.19. Notice that the 
curve for P1 has changed from Figure 18.16. That’s because the change 
in P2 means we’re taking the P1 cross-section at P2=1.5 instead of 
P2=0. 

Figure 18.19: When neither P1 or P2 match the label, we can try to reduce 
the error by adjusting each one individually. In this example, the label is 
(1, 0). Left: The error for different values of P1 when P2 is 1.5. The smallest 
value is a little more than 2. The derivative tells us that we can get to 
that lower value by making P1 larger than its current value of −0.5 (that 
is, moving to the right). Right: The error for different values of P2 when 
P1 = −0.5. The current value of P2 is 1.5. The derivative tells us that we can 
make the error smaller by making P2 smaller (that is, moving to the left). 
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For the specific values in this figure, it looks like a change of about 0.5 
in P1 would result in a change of about −1.5 in the error, so Cδ is about 

−1.5/0.5 = −3. Instead of changing P1, what if we changed P2? Looking 
at the graph on the right, a change of about −0.5 (moving left this time, 
towards the minimum of the bowl) would result in a change of about 

−1.25 in the error, so Dδ is about 1.25/-0.5 = 2.5. The positive sign here 
tells us that moving P2 to the right will cause the error to go up, so we 
want to move P2 to the left. 

There are some interesting things to observe here. First, although both 
curves are bowl shaped, the bottoms of the bowls are at their respec-
tive label values. Second, because the current values of P1 and P2 are 
on opposite sides of the bottom of their respective bowls, their deriva-
tives have opposite signs (one is positive, the other is negative). 

The most important observation is that the minimum available error 
is not 0. In particular, the curves never get lower than a bit more than 
2. That’s because each curve looks at changing just one of the two val-
ues, while the other is left fixed. So even if P1 got to its ideal value of 
1, there would still be error in the result because P2 is not at its ideal 
value of 0, and vice-versa. 

This means that if we change just one of these two values, we’ll never 
get down to the minimum error of 0. To get the error down to 0, both 
P1 and P2 have to work their way down to the bottom of their respec-
tive curves. 

Here’s the wrinkle: each time either P1 or P2 changes, we pick out a 
different cross-section of the error surface. That means we get differ-
ent curves for the error, just as Figure 18.16, when P2=0, is different 
from Figure 18.19 when P2 = 1.5. Because the error curve has changed, 
the deltas change as well. 

So if we change either value, we have to restart this whole process 
again from scratch before we know how to change the other value. 
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Well, not exactly. We’ll see later that we actually can update both val-
ues at the same time, as long as we take very small steps. But that’s 
about as far as we can cheat before we risk driving the error up again. 
Once we’ve taken our small steps, we have to evaluate the error sur-
face again to find new curves and then new derivatives before we can 
adjust P1 and P2 again. 

We’ve just described the general way to compute the delta values for 
the output neurons (we’ll look at hidden neurons in a moment). In 
practice, we often use a particular measure of error that makes things 
easier, because we can write down a super simple formula for the 
derivative, which in turns gives us an easy way to find the deltas. This 
error measure is called the quadratic cost function, or the mean 
squared error (or MSE) [Neilsen15a]. As usual, we won’t get into 
the mathematics of this equation. What matters for us now is that this 
choice of function for the error means that the derivative at any neu-
ron’s value (that is, the neuron’s delta value) is particularly easy to 
calculate. The delta for an output neuron is the difference between the 
neuron’s value and the corresponding label entry [Seung05]. Figure 
18.20 shows the idea graphically. 

Figure 18.20: When we use the quadratic cost function, the delta for 
any output neuron is just the value in the label minus the output of that 
neuron. As shown in red, we save that delta value with its neuron. 
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This little calculation matches up nicely with our bowl-shaped pictures 
above. Remember that Co and P1 are two names for the same value, as 
are Do and P2. 

Let’s consider Co (or P1) when the first label is 1. If Co=1, then 1−Co=0, 
so a tiny change to Co will have no effect on the output error. That 
makes sense, because we’re at the bottom of the bowl where it’s flat. 

Suppose that Co=2. Then the difference 1−Co=−1, telling us that a 
change to Co will change the error by the same amount, but with oppo-
site sign (for example, a change of 0.2 in Co would result in a change 
of −0.2 to the error). If Co is much larger, say Co=5, then 1−Co=−4, 
telling us that any change to Co will be amplified by a factor of −4 in 
the change to the error. That also makes sense, because we’re now at a 
very steep part of the bowl where a small change in the input (Co) will 
cause a big change in the output (the change in the error). We’ve been 
using large numbers for convenience, but remember that the deriva-
tive only tells us what happens if we take a very small step. 

The same thought process holds for neuron D, and its output Do (or 
P2). 

We’ve now completed the first step in backpropagation: we’ve found 
the delta values for all the neurons in the output layer. 

We’ve seen that the delta for an output neuron depends on the value in 
the label and the neuron’s output. If the neuron’s output changes, the 
delta will change as well. 

So “the delta” is a temporary value that changes with every new label, 
and every new output of the neuron. Following this observation, any 
time we update the weights in our network, we’ll need to calculate new 
deltas. 

Remember that our goal is to find the deltas for the weights. When we 
know the deltas for all the neurons in a layer, we can update all the 
weights feeding into that layer. 

Let’s see how that’s done. 
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18.7  Step 2: Using Deltas to 
Change Weights
We’ve seen how to find a delta value for every neuron in the output 
layer. If the output of any of those neurons changes by some amount, 
we multiply that change by the neuron’s delta to find the change to the 
output. 

We know that a change to the neuron’s output can come from a change 
in an input, which in turn can come from a change in a previous neu-
ron’s output or the weight connecting that output to this neuron. Let’s 
look at these inputs. 

We’ll focus on output neuron C, and the value it receives from neuron 
A on the previous layer. Let’s use the temporarily name V to refer to 
the value that arrives into C from A. It has a value given by the output 
of A, or Ao, and the weight between A and C, or AC, so the value V is 
Ao×AC. This setup is shown in Figure 18.21. 

Figure 18.21: The value coming into neuron C, which we’re calling V for 
the moment, is Ao (the output of A) times the weight AC, or Ao×AC.

If V changes for any reason, we know that the output of C will change 
by V as well (since C is just adding up its inputs and passing on that 
sum). Since the change in C is V, the network’s error will change by 
V×Cδ, since we built Cδ to do just that. 

There are only two ways the value of V can change in this setup: either 
the output of A changes or the value of the weight changes. 
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Since the output of A is computed by the neuron automatically, there’s 
not much we can do to adjust that value directly. But we can change 
the weight, so let’s look at that. 

Let’s modify the weight AC by adding some new value to it. We’ll call 
that new value ACm, so the new value arriving at C is Ao×(AC+ACm). 
This is shown in Figure 18.22.

Figure 18.22: If we change the weight AC, then this will change the value 
of V. Here, the value of V coming into neuron C is Ao×(AC+ACm). 

If we subtract the old value Ao×AC from the new value Ao×(AC+ACm), 
we find that the change in the value coming into C due to our modify-
ing the weight is Ao×ACm. 

Since this change goes into C, the change will then get multiplied by 
Cδ, telling us the change in the network’s error as a result of modifying 
the weight. 

Hold on a second. That’s what we’ve wanted this whole time, to find 
out what a change in the weight would do to the error. Have we just 
found that? 

Yup, we have. We’ve achieved our goal! We discovered how a change 
to a weight would affect the network’s error. 

Let’s look at that again. 

If we change the weight AC by adding ACm to it, then we know the 
change in the network’s error is given by the change in C, (Ao×ACm), 
times the delta for C, or Cδ. That is, the change in error is (Ao×ACm)×Cδ. 

Let’s suppose we increase the weight by 1. Then ACm=1, so the error 
will change by Ao×Cδ. 
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So every change of +1 to the weight AC will cause a change of Ao×Cδ 
to the network error. If we add 2 to the weight AC, we’ll get double this 
change, or 2×(Ao×Cδ). If we add 0.5 to the weight, we’ll get half as 
much, or 0.5×(Ao×Cδ). 

We can turn this around, and say that if we want to increase the error 
by 1, we should add 1/(Ao×Cδ) to the weight. But we want to make the 
error go down. The same logic says that we can reduce the error by 1 if 
we instead subtract the value 1/(Ao×Cδ) from the weight. So now we 
know how to change this weight in order to reduce the overall error. 

We’ve found what to do to the weight AC to decrease the error in this 
little network. To subtract Ao×Cδ from the error, we subtract 1 from 
AC. 

Figure 18.23 shows that every change of 1 in the weight AC leads to a 
corresponding change of Ao×Cδ in the network error in our network. 
And subtracting that value leads to a change of −Ao×Cδ in the error. 

Figure 18.23: For each change in the value of the weight AC, we can look 
up the corresponding change in our network’s error. When AC changes by 
1, the network error changes by Ao×Cδ. 
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We can summarize this process visually with a new convention for our 
diagrams. We’ve been drawing the outputs of neurons as arrows com-
ing out of a circle to the right. Let’s draw deltas using arrows coming 
out of the circles to the left, as in Figure 18.24. 

Figure 18.24: Neuron C has an output Co, drawn with an arrow pointing 
right, and a delta Cδ, drawn with an arrow pointing left. 

With this convention, the whole process for finding the updated value 
for a weight is summarized in Figure 18.25. Showing subtraction in a 
diagram like this is hard, because if we have a “minus” node with two 
incoming arrows, it’s not clear which value is being subtracted from 
the other (that is, if the inputs are x and y, are we computing x−y or 
y−x?). Our approach to computing AC−(Ao×Cδ) is to find Ao×Cδ, mul-
tiply that by −1, and then add that result to AC. 
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Figure 18.25: Updating the value of weight AC. We start with the output 
Ao from neuron A and the delta Cδ from neuron C, and multiply them 
together. We’d like to subtract this from the current value of AC. To show 
this clearly in the diagram, we instead multiply the product by −1, and 
then add it to AC. The green arrow is the update step, where this result 
becomes the new value of AC.

Figure 18.25 is the goal of this chapter, and the reason we computed 
Cδ. 

This is how our network learns. 

Figure 18.25 tells us how to change the weight AC to bring down 
the error. The diagram says that to reduce the error, we should add 

−Ao×Cδ to the value of AC. 

Success! 

If we change the weights for both output neurons C and D to reduce 
the error by 1 from each neuron, we’d expect the error to go down by 

−2. We can predict this because the neurons sharing the same layer 
don’t rely on each other’s outputs. Since C and D are both in the out-
put layer, C doesn’t depend on Do and D doesn’t depend on Co. They 
do depend on the outputs of neurons on previous layers, but right now 
we’re just focusing on the effect of changing weights for C and D. 
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It’s wonderful that we know how to adjust the last two weights in the 
network, but how about all the other weights? To use this technique, 
we need to figure out the deltas for all the neurons in all the remaining 
layers. Then we can use Figure 18.25 to improve all the weights in the 
network. 

And this brings us to the remarkable trick of backpropagation: we can 
use the neuron deltas at one layer to find all the neuron deltas for its 
preceding layer. And as we’ve just seen, knowing the neuron deltas 
and the neuron outputs tells us how to update all the weights coming 
into that neuron. 

Let’s see how to do that. 

18.8  Step 3: Other Neuron Deltas
Now that we have the delta values for the output neurons, we will use 
them to compute the deltas for neurons on the layer just before the 
output layer. In our simple model, that’s just neurons A and B. Let’s 
focus for the moment just on neuron A, and its connection to neuron C. 

What happens if Ao, the output of A, changes for some reason? Let’s 
say it goes up by Am. Figure 18.26 follows the chain of actions from 
this change in Ao to the change in Co to the change in the error.
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Figure 18.26: Following the results if we change the output of neuron A. 
Read the diagram left to right. The change to A, shown as Am, is multi-
plied by the weight AC and is added to the values accumulated by neuron 
C. This raises the output of C by Cm. As we know, this change in C can be 
multiplied by Cδ to find the change in the network error. In this example, 
Am=5/4, and AC=1/5, so Cm=5/4×1/5=1/4. The value of Cδ is −4, so the 
change in the error is 1/4×−4=−1. 

We know that the neuron C adds together its weighted inputs and then 
passes on the sum (since we’re ignoring the activation function for 
now). So if nothing else changes in C except for the value coming from 
A, that’s the only source of any change in Co, the output of C. We rep-
resent that change to Co as the value Cm. As we saw before, we can 
predict the change in the network’s error by multiplying Cm by Cδ. 

So now we have a chain of operations from neuron A to neuron C and 
then to the error. The first step of the chain says that if we multiply the 
change in Ao (that is, Am) by the weight AC, we’ll get Cm, the change 
in in the output of C. And we know from above that if we multiply Cm 
by Cδ, we get the change in the error. 

So mushing this all together, we find that the error due to a change Am 
in the output of A is Am×AC×Cδ. 
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In other words, if we multiply the change in A (that is, Am) by AC ×Cδ, 
we get the change in the error due to the change in neuron A. That is, 
Aδ=AC×Cδ. 

We just identified the delta of A! Since the delta is the value that we 
multiply a neuron’s change by to find the change in the error, and we 
just found that value is AC ×Cδ, then we’ve found Aδ. 

Figure 18.27 shows this visually. 

Figure 18.27: We can mush together the operations in Figure 18.26 into 
a more succinct diagram. In that figure, we saw that Am, the change in A, 
gets multiplied by the weight AC and then the value Cδ. So we can repre-
sent that as a single step, where we multiply Am by the two values AC and 
Cδ multiplied together. As before, the value of Am=5/4, AC=1/5, and Cδ is 

−4. So AC×Cδ=−4/5, and multiplying that by Am=5/4 gives us a change in 
the error of −1.0. 

This is kind of amazing. Neuron C has disappeared. It’s literally out of 
the picture in Figure 18.27. All we needed was its delta, Cδ, and from 
that we could find Aδ, the delta for A. And now that we know Aδ, we 
can update all of the weights that feed into neuron A, and then... no, 
wait a second. 
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We don’t really have Aδ yet. We just have one piece of it. 

At the start of this discussion we said we’d focus on neurons A and C, 
and that was fine. But if we now remember the rest of the network, we 
can see that neuron D also uses the output of A. If Ao changes due to 
Am, then the output of D will change as well, and that will also have an 
effect on the error. 

To find the change in the error due to neuron D, caused by a change 
to neuron A, we can repeat the process above, just replacing neuron C 
with neuron D. So if Ao changes by Am, and nothing else changes, the 
change in the error due to the change in D is given by AC×Dδ. 

Figure 18.28 shows these two paths at the same time. This figure is set 
up slightly differently from the ones above. Here, the effect of a change 
in A on the error due to a change in C is shown by the path from the 
center of the diagram moving to the right. The effect of a change in A 
on the error due to a change in D is shown by the path from the center 
of the diagram and moving left. 
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Figure 18.28: The output of neuron A is used by both neuron C and 
neuron D. In this figure, we’ve changed our left-to-right convention to 
show the same change in A, given by Am, affecting the final error by way 
of two different paths, one to the left and one to the right, each starting 
at neuron A in the center. The path through neuron C is shown going to 
the right, where Am, the change in the output of A, is scaled by AC×Cδ to 
get a change in the error labeled Em(AC). Moving from the center to the 
left, Am is scaled by AD×Dδ to get another change to the error, labeled 
Em(AD). The result is two separate changes to the error. 

Figure 18.28 shows two separate changes to the error. Since neurons C 
and D don’t influence each other, so their effects on the error are inde-
pendent. To find the total change to the error, we just add up the two 
changes. Figure 18.29 shows the result of adding the change in error 
via neuron C and the change via neuron D. 
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Figure 18.29: When the output of neuron A is used by both neuron C and 
neuron D, the resulting changes to the error add together. 

Now that we’ve handled all the paths from A to the outputs, we can 
finally write the value for Aδ. Since the errors add together, as in Figure 
18.29, we can just add up the factors that scale Am. If we write it out, 
this is Aδ=(AC×Cδ)+(AD×Dδ). 

Now that we’ve found the value of delta for neuron A, we can repeat 
the process for neuron B to find its delta. 

We’ve actually done something far better than find the delta for just 
neurons A and B. We’ve found out how to get the value of delta for 
every neuron in any network, no matter how many layers it has or 
now many neurons there are! 

That’s because everything we’ve done involves nothing more than a 
neuron, the deltas of all the neurons in the next layer that use its value 
as an input, and the weights that join them. With nothing more than 
that, we can find the effect of a neuron’s change on the network’s error, 
even if the output layer is dozens of layers away. 
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To summarize this visually, let’s expand on our convention for draw-
ing outputs and deltas as right-pointing and left-pointing arrows to 
include the weights, as in Figure 18.30. We’ll say that the weight on 
a connection multiplies either the output moving to the right, or the 
delta moving to the left, depending on which step we’re thinking about. 

Figure 18.30: Drawing the values associated with neuron A. (a) Our 
convention is to draw the output Ao as an arrow coming out of the right 
of the neuron, and the delta Aδ as an arrow coming out of the left. (b) The 
output of A is multiplied by AC on its way to being used by C when we’re 
evaluating a sample. (c) The delta of C is multiplied by AC on its to being 
used by A when we’re computing delta values. 

In other words, there is one connection with one weight joining neu-
rons A and C. If the arrow points to the right, then the weight multiplies 
Ao, the output of A as it heads into neuron C. If the arrow points to the 
left, the weight multiplies Cδ, the delta of C, as it heads into neuron A. 
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When we evaluate a sample, we use the feed-forward, left-to-right style 
of drawing, where the output value from neuron A to neuron C travels 
over a connection with weight AC. The result is that the value Ao×AC 
arrives at neuron C where it’s added to other incoming values, as in 
Figure 18.30(b). 

When we later want to compute Aδ, we draw the flow from right-to-left. 
Then the delta leaving neuron C travels over a connection with weight 
AC. The result is that the value Cδ×AC arrives at neuron A where it’s 
added to other incoming values, as in Figure 18.30(c). 

Now we can summarize both the processing of a sample input, and the 
computation of the deltas, in Figure 18.31. 

Figure 18.31: Calculating the output and delta for neuron H. Left: To 
calculate Ho, we scale the output of each preceding neuron by the weight 
of its connection and add the results together. Right: To calculate Hδ, we 
scale the delta of each following neuron by the connection’s weight and 
add the results together. 

This is pleasingly symmetrical. It also reveals an important practical 
result: when a neuron is connected to the same number of preceding 
and following neurons, calculating the delta for a neuron takes the 
same amount of work (and therefore the same amount of time) as cal-
culating its output. So calculating deltas is as efficient as calculating 
output values. Even when the input and output counts are different, 
the amount of work involved is still close in both directions. 
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Note that Figure 18.31 doesn’t require anything of neuron H except 
that it has inputs from a preceding layer that travel on connections 
with weights, and deltas from a following layer that travel on connec-
tions with weights. So we can apply the left half of Figure 18.31 and 
calculate the output of neuron H as soon as the outputs from the previ-
ous layer are available. And we can apply the right half of Figure 18.31 
and calculate the delta of neuron H as soon as the deltas from the fol-
lowing layer are available. 

This also tells us why we had to treat the output layer neurons as a 
special case: there are no “next layer” deltas to be used. 

This process of finding the delta for every neuron in the network is the 
backpropagation algorithm. 

18.9  Backprop in Action
In the last section we saw the backpropagation algorithm, which lets 
us compute the delta for every neuron that in a network. 

Because that calculation depended on the deltas in the following neu-
rons, and the output neurons don’t have any of those, we had to treat 
the output neurons as a special case. 

Once all the neuron deltas for any layer (including the output layer) 
have been found, we can then step back one layer (towards the inputs), 
and find the deltas all the neurons on that layer, and then step back 
again, compute all the deltas, step back again, and so on until we reach 
the input. 

Let’s walk through the process of using backprop to find the deltas for 
all the neurons in a slightly larger network. 

In Figure 18.32 we show a new network with four layers. There are still 
two inputs and outputs, but now we have 3 hidden layers of 2, 4, and 3 
neurons. 
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Figure 18.32: A new classifier network with 2 inputs, 2 outputs, and 3 
hidden layers.

We start things off by evaluating a sample. We provide the values of its 
X and Y features to the inputs, and eventually the network produces 
the output predictions P1 and P2. 

Now we’ll start backpropagation by finding the error in the output neu-
rons, as shown in Figure 18.33. 

Figure 18.33: Computing the delta of the first output neuron in a new 
network. Using the general approach, we take the outputs of the output 
layer (here called P1 and P2) and compare them to the label to derive an 
error. From the outputs, the label, and the error value we find how much 
a change in P1 would change the error. That value is the delta stored at 
the neuron that produces P1. 
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We’ve begun arbitrarily with the upper neuron, which gives us the pre-
diction we’ve labeled P1 (the likelihood that the sample is in class 1). 
From the values of P1 and P2 and the label, we can compute the error 
in the network’s output. Let’s suppose the network didn’t get this sam-
ple perfectly predicted, so the error is greater than zero. 

Using the error, the label, and the values of P1 and P2, we can com-
pute the value of delta for this neuron. If we’re using the quadratic 
cost function, this delta is just the value of the label minus the value of 
the neuron, as we saw in Figure 18.20. But if we’re using some other 
function, it might be more complicated, so we’ve illustrated the gen-
eral case. 

Once we’ve computed the value of delta for this neuron, we store it 
with the neuron, and we’re done with that neuron for now. 

We’ll repeat this process for all the other neurons in the output layer 
(here we have only one more). That finishes up the output layer, since 
we now have a delta for every neuron in the layer. Figure 18.34 sum-
marizes these two neurons getting their deltas. 
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Figure 18.34: Summarizing the steps for finding the delta for both output 
neurons.

At this point we could start adjusting the weights coming into the out-
put layer, but we usually break things up by first finding all the neuron 
deltas, and then adjusting all the weights. Let’s follow that typical 
sequence here. 

So we’ll move backwards one step to the third hidden layer (the one 
with 3 neurons). Let’s consider finding the value of delta for the top-
most of these three, as in the left image of Figure 18.35. 
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Figure 18.35: Using backpropagation to find the deltas for the next-to-
last layer of neurons. To find the delta for each neuron, we find the deltas 
of the neurons that use its output, multiply those deltas by the corre-
sponding weights, and add the results together. 

To find the delta for this neuron, we follow the recipe of Figure 18.28 
to get the individual contributions, and then the recipe of Figure 18.29 
to add them together to get the delta for this neuron. 

Now we just work our way through the layer, applying the same pro-
cess to each neuron. When we’ve completed all the neurons in this 
3-neuron layer, we take a step backwards and start on the hidden layer 
with 4 neurons. 

And this is where things really become beautiful. To find the deltas 
for each neuron in this layer, we need only the weights to each neuron 
that uses this neuron’s output, and the deltas for those neurons, which 
we just computed. 

The other layers are irrelevant. We don’t care about the output layer 
any more now. All we need are the deltas in the next layer’s neurons, 
and the weights that get us to those neurons. 

Figure 18.36 shows how we compute the deltas for the four neurons in 
the second hidden layer. 



763

Chapter 18: Backpropagation

Figure 18.36: Using backprop to find the delta values for the second 
hidden layer. 

When all 4 neurons have had deltas assigned to them, that layer is fin-
ished, and we take another step backwards. 

Now we’re at the first hidden layer with two neurons. Each of these 
connects to the 4 neurons on the next layer. Once again, all we care 
about now are the deltas in that next layer and the weights that connect 
the two layers. For each neuron we find the deltas for all the neurons 
that consume that neuron’s output, multiply those by the weights, and 
add up the results, as shown in Figure 18.37.
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Figure 18.37: Using backprop to find the neurons for the first hidden 
layer.

When Figure 18.37 is complete, we’ve found the delta for every neuron 
in the network. 

Now we’ll adjust the weights. We’ll run through the connections 
between neurons and use the technique we saw in Figure 18.25 to 
update for every weight to a new and improved value. 

Figure 18.34 through Figure 18.37 show why the algorithm is called 
backwards propagation. We’re taking the deltas from any layer and 
propagating, or moving, their information backwards one layer at a 
time, modifying it as we go. 

As we’ve seen, computing each of these delta values is fast. It’s just one 
multiplication per outgoing connection, and then adding those pieces 
together. That takes almost no time at all. 

Backprop becomes highly efficient when we use parallel hardware like 
a GPU. Because the neurons on a layer of a feed-forward network don’t 
interact, and the weights and deltas that get multiplied are already 
computed, we can use a GPU to multiply all the deltas and weights for 
an entire layer at once. 

Computing an entire layer’s worth of deltas in parallel saves us a lot of 
time. If each of our layers had 100 neurons, and we had enough hard-
ware, computing all 400 deltas would take only the same time required 
to find 4 deltas. 
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The tremendous efficiency that comes from this parallelism is a key 
reason why backprop is so important. 

Now we have all of the deltas, and we know how to update the weights. 
Once we actually do update the weights, we should re-compute all the 
deltas, because they’re based on the weights. 

We’re just about done, but we need to make good on our earlier prom-
ise and put activations functions back into our neurons. 

18.10  Using Activation Functions
Including the activation function in backpropagation is a small step. 
But understanding that step and why it’s the right thing to do takes a 
bit of thinking. We left it off in our earlier discussion so we wouldn’t 
get distracted, but let’s now get the activation function back in there. 

We’ll start by thinking about a neuron during the feed-forward step, 
when we’re evaluating a sample and data is flowing from left to right, 
producing neuron outputs as it goes. 

When we calculate the output of a neuron, the sum of the weighted 
inputs goes through an activation function before it leaves the neuron, 
as shown in Figure 18.38. 

Figure 18.38: Neuron A, with its activation function.
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To make things a bit more specific, let’s choose an activation function. 
We’ll pick the sigmoid, discussed in Chapter 17, because it’s smooth and 
makes for clear demonstrations. We won’t use any particular qualities 
of the sigmoid, so our discussion will be applicable to any activation 
function. 

Figure 18.39 shows a plot of the sigmoid curve. Increasingly large pos-
itive values approach 1 ever more closely without quite getting there, 
and increasingly large negative values approach 0, but never quite get 
there, either. Rather than constantly refer to values with phrases like 

“very, very nearly 1” or “extremely close to 0,” let’s say for simplicity 
that input values that are greater than about 7 can be considered to get 
an output value of 1, while those less than −7 can be considered to get 
an output of 0. Values in the range (−7, 7) will be smoothly blended in 
the S-shaped function that gives the sigmoid its name. 

Figure 18.39: The sigmoid curve, plotted from −15 to 15. Values greater 
than about 7 or less than about −7 are very near to 1 and 0, respectively.

Let’s look at neuron C in our original tiny four-neuron network of 
Figure 18.8. Neuron C gets one input from neuron A, and one from 
neuron B. For now, let’s look just at the input from A, as in Figure 
18.40. The value Ao, or the output of A, gets multiplied by the weight 
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AC before it gets summed with all the other inputs in C. Since we’re 
focusing just on the pair of neurons A and C, we’ll ignore any other 
inputs to C. The input value Ao×AC is then used as the input to the 
activation function to find the output value Co. 

Figure 18.40: Ignoring the other inputs to A for the moment, the input 
to the activation function is given by multiplying the output of A and 
the weight AC. We can find the value of the activation function at that 
point, which gives us the output Co. Left: When the output of A is Ao and 
the weight is AC, the value into the activation function is Ao×AC. Right: 
When the output of A is Ao and the weight is AC+ACm, the value into the 
activation function is Ao×(AC+ACm). Here we show the values from the 
left plot as dots with white in the center, and the new values as filled-in 
dots. Note that the change in the output is substantial, because we’re on 
a steep part of the curve. 

We know that to reduce the error, we’ll be adding some positive or neg-
ative number ACm to the value of the weight AC. The right diagram in 
Figure 18.40 shows the result of adding a positive value of ACm. In 
this case, the output Co changes by a lot, because we’re on a steep part 
of the curve. 

So this says that by adding ACm to the weight, we’re going to have 
a bigger effect on the output error than we would have had without 
the activation function, because that function has turned our change 
of ACm into something larger. 

Suppose instead our starting value of Ao×AC put us near a shallow 
part of the curve, and we add the same ACm to AC, as in Figure 18.41. 
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Figure 18.41: In a shallow part of the curve. Left: Before adding ACm as 
in Figure 18.40. Right: Adding this value results in a small change in the 
output of C. 

Now adding the same value ACm to the weight causes a smaller change 
in Co than before. In this case, it’s even less than ACm itself. The 
smaller change to the output means there will be a smaller change in 
the network error. In other words, adding ACm to the weight in this 
situation will result in a smaller change to the output error than we’d 
get if there was no activation function present. 

What we’d love to have is something that can tell us, for any point 
on the activation function curve, how steep the curve is at that point. 
When we’re at a point where the curve is going up steeply to the right, 
positive changes in the input will be amplified a lot, as in Figure 18.40. 
When we’re at a point where the curve is going up shallowly to the 
right, as in Figure 18.41, such changes will be amplified by a little. 

If we change the input with a negative value of ACm, and move our 
stating point to the left, then the amount of slope tells us how much 
the change in the error will decrease. We get the same situations as in 
Figure 18.40(b) and Figure 18.41(b), but with the starting and ending 
positions reversed. 

Happily, we already know how to find the slope of a curve: that’s just 
the derivative. Figure 18.42 shows the sigmoid, and its derivative.
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Figure 18.42: The sigmoid curve and its derivative. Note that the vertical 
scales are different for the two plots.

The sigmoid is flat at the left and right ends. So if we’re in the flat 
regions and we move left or right a little bit, that will cause little to no 
change in the output of the function. In other words, the curve is flat, 
or has no slope, or has a derivative of 0. The derivative increases as the 
input moves from about −7 to 0 because the curve is getting steeper. 
Then the derivative decreases back to 0 again even as the input keeps 
going up because the curve becomes more shallow off to the right, 
approaching 1 but never quite getting there. 

If we were to work through the math, we’d find that this derivative is 
exactly what we need to fix our prediction of the change to the error 
based on a change to a weight. When we’re on a steep part of the curve, 
we want to crank up the value of delta for this neuron, because changes 
to its inputs will cause big changes in the activation function, and thus 
have big changes to the network error. When we’re on a shallow part 
of the curve, then changes to the inputs will have little effect on the 
change in the output, so we want to make this neuron’s delta smaller. 

In other words, to account for the activation function, we just take the 
delta we normally compute, and multiply it by the derivative of the 
activation function, evaluated at the same point that we used during 
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the forward pass. Now the delta accounts for how the activation func-
tion will exaggerate or diminish the amount of change in the neuron’s 
output, and hence its effect on the network error. 

To keep things nicely bundled, we can perform this step immediately 
after computing the delta as we did before. 

The whole business for one neuron is summarized in Figure 18.43. 
Here we imagine we have a neuron H. The top part is the forward pass, 
when we’re evaluating a sample and computing this neuron’s output. 
Following a common convention, we’ve given the name z to the result 
of the summation step. The value of the activation function is what 
we get when we look vertically upwards from the point z on the X axis. 
The bottom part of the figure is the backward pass, where we com-
pute this neuron’s delta. Again, we use z to find the derivative of the 
activation function, and we multiply our incoming sum by that before 
passing it on. 
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Figure 18.43: Network evaluation and backpropagation of deltas in a 
nutshell, for neuron H. Top: In the forward pass, the weighted inputs 
are added together, giving us a value we call z. The value of the activa-
tion function at z is our output Ho. Bottom: In the backward pass, the 
weighted deltas are added together, and we use the z from before to look 
up the derivative of the activation function. We multiply the sum of the 
weighted deltas by this value, giving us Hδ. 

In this figure, neuron H has three inputs, coming from neurons A, B, 
and C, with output values Ao, Bo, and Co. During the forward pass, 
when we’re finding the neuron’s output, these are multiplied respec-
tively by the weights AH, BH, and CH, and then added together. We’ve 
labeled this sum with the letter z. Now we look up z in the activation 
function, and its value is Ho, the output of this neuron. 
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Now when we run the backward pass to find the neuron’s delta, we 
find the deltas of the neurons that use Ho as an input. Let’s say they’re 
neurons J, K and L. So we multiply their deltas Jδ, Kδ, and Lδ by their 
respective weights HJ, HK, and HL, and add up those results. 

Now we get the value of z from the forward pass, and use it to find the 
value of the derivative of the activation function. We multiply the sum 
we just found with this number, and the result is Hδ, the delta for this 
neuron. 

This all goes for the output neurons too, if they have activation func-
tions, only in the backward pass we use the error information rather 
than deltas from the next layer. 

Notice how compact and local everything is. The forward pass depends 
only on the output values of the previous layer, and the weights that 
connect to them. The backward pass depends only on the deltas from 
the following layer, the weights that connect to them, and the activa-
tion function. 

Now we can see why we were able to get away with ignoring the activa-
tion function throughout most of this chapter. We can pretend that we 
really did have an activation function all along: the identity activa-
tion function, shown in Figure 18.44. This has an output that’s the 
same as its input. That is, it has no effect. 
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Figure 18.44: The identity function as activation function. Left: The iden-
tity produces as output the same value it received as input. Right: Its 
derivative is 1 everywhere, because the function has a constant slope of 1.

As Figure 18.44 shows, the derivative of the identify activation func-
tion is always 1 (that’s because the function is a straight line with slope 
of 1 everywhere, and the derivative at any point is just the slope of the 
curve at that point). Let’s think back on our discussion of backpropa-
gation and include this identity activation within every neuron. During 
the forward pass, the outputs would be unchanged by this function, so 
it has no effect. During the backward pass, we’d always multiply the 
summed deltas by 1, again having no effect. 

We said earlier that our results weren’t limited to using the sigmoid. 
That’s because we didn’t use any special properties of sigmoid in our 
discussion, other than to assume it has a derivative everywhere. This 
is why activation functions are designed so that they have a derivative 
for every value (recall from Chapter 5 that library routines automat-
ically apply mathematical techniques to take care of any spots that 
don’t have a derivative). 

Let’s look at the popular ReLU activation function. Figure 18.45 shows 
the ReLU function and its derivative. 
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Figure 18.45: The ReLU function as an activation function. Left: ReLU 
returns its input when that value is 0 or larger, and otherwise returns 0. 
Right: Its derivative is a step function, 0 for inputs less than 0 and 1 for 
inputs greater than 0. The sudden jump at 0 is automatically managed 
for us by libraries so that we have a smooth derivative everywhere. 

Everything we did with the sigmoid can be applied to the ReLU, with-
out change. And the same goes for any other activation function. 

That wraps things up. We’ve now put activation functions back into 
our neurons. 

That brings us to the end of basic backpropagation. 

Before we leave the discussion, though, let’s look at a critical control 
that keeps things working well: the learning rate. 

18.11  The Learning Rate
In our description of updating a weight, we multiplied the left neu-
ron’s output value and the right neuron’s delta, and subtracted that 
from the weight (recall Figure 18.25 from much earlier). 
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But as we’ve mentioned a few times, changing a weight by a lot in a 
single step is often a recipe for trouble. The derivative is only accurate 
for very tiny changes in a value. If we change a weight by too much, we 
can jump right over the smallest value of the error, and even find our-
selves increasing the error. 

On the other hand, if we change a weight by too little, we might see 
only the tiniest bit of learning, slowing everything down. Still, that 
inefficiency is usually better than a system that’s constantly over-re-
acting to errors. 

In practice, we control the amount of change to the weights during 
every update with a hyperparameter called the learning rate, often 
symbolized by the lower-case Greek letter η (eta). This is a number 
between 0 and 1, and it tells the weights how much of their newly-com-
puted value to use when they update. 

When we set the learning rate to 0, the weights don’t change at all. Our 
system will never change and never learn. If we set the learning rate 
to 1, the system will apply big changes to the weights, and might over-
shoot the mark. If this happens a lot, the network can spend its time 
constantly overshooting and then compensating, with the weights 
bouncing around and never settling into their best values. So we usu-
ally set the learning rate somewhere between these extremes. 

Figure 18.46 shows how the learning rate is applied. We just scale the 
value of −(Ao×Cδ) by η before adding it back in to AC. 
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Figure 18.46: The learning rate helps us control how fast the network 
learns by controlling the amount by which weights change on each 
update. Here we see Figure 18.25 with an extra step that multiplies the 
value −(Ao×Cδ) by the learning rate δ before adding it to AC. When δ is 
a small positive number (say 0.01), then each change will be small, which 
often helps the network learn. 

The best choice of the learning rate is dependent on the specific net-
work we’ve built and the data we’re training on. Finding a good choice 
of learning rate can be essential to getting the network to properly 
learn at all. Once the system is learning, changing this value can 
affect whether that process goes quickly or slowly. Usually we have 
to hunt for the best value of eta using trial and error. Happily, there 
are algorithms that automate the search for a good starting value for 
the learning rate, and other algorithms that fine-tune the learning rate 
as learning progresses. We’ll see such algorithms in Chapter 19. As a 
general rule of thumb, and if none of our other choices direct us to a 
particular learning rate, we often start with a value around 0.01 and 
then train the network for a while, watching how well it learns. Then 
we then raise or lower it from there and train again, over and over, 
hunting for the value that learns most efficiently. 
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18.11.1  Exploring the Learning Rate
Let’s see how backprop performs with different learning rates. We’ll 
build a classifier to find the boundary between the two half-moons 
that we used in Chapter 15. Figure 18.47 shows our training data of 
about 1500 points. We pre-processed this data to give it zero mean 
and a standard deviation of 1 for each feature. 

Figure 18.47: About 1500 points generated synthetically by the 
make_moons() routine in scikit-learn. 

Because we have only two categories, we’ll build a binary classifier. 
This lets us skip the whole one-hot encoding of labels and dealing with 
multiple outputs, and instead use just one output neuron. If the value 
is near 0, the input is in one class. If the output is near 1, the input is in 
the other class. 

Our classifier will have 2 hidden layers, each with 4 neurons. These 
are essentially arbitrary choices that give us a network that’s just com-
plex enough for our discussion. Both layers will be fully-connected, so 
every neuron in the first hidden layer will send its output to every neu-
ron in the second hidden layer. Figure 18.48 shows the idea. 
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Figure 18.48: Our binary classifier takes in two values as input (the X and 
Y of each point). Each input goes into the 4 neurons on the first layer. Each 
of those 4 neurons connects to each of the 4 neurons on the next hidden 
layer. Then a single neuron takes the outputs of the second hidden layer 
and presents a single value for output. In this network, we’ve used ReLU 
activation functions for the neurons in the hidden layers, and a sigmoid 
activation function on the output neuron. 

How many weights are in our network? There are 4 coming out of each 
of the 2 inputs, then 4×4 between the layers, and then 4 going into 
the output neuron. That gives us (2×4)+(4×4)+4=28. Each of the 9 
neurons also has a bias term, so our network has 28+9=37 weights. 
They start with small random numbers. Our goal is to use backprop to 
adjust those 37 weights so that the number that comes out of the final 
neuron always matches the label for that sample. 

As we discussed above, we’ll evaluate one sample, calculate the error, 
compute the deltas with backprop, and then update the weights using 
the learning rate. Then we’ll move on to the next sample. Note that if 
the error is 0, then the weights won’t change at all. Each time we pro-
cess all the samples in the training set, we say we’ve completed one 
epoch of training. 

Our discussion of backprop mentioned how much we rely on making 
“small changes” to the weights. There are two reasons for this. The first 
is that the direction of change for every weight is given by the derivative 
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(or gradient) of the error at that weight. But as we saw, the gradient is 
only accurate very near the point we’re evaluating. If we move too far, 
we may find ourselves increasing the error rather than decreasing it. 

The second reason for taking small steps is that changes in weights 
near the start of the network will cause changes in the outputs of neu-
rons later on, and we’ve seen that we use those neuron outputs to 
help compute the changes to the later weights. To prevent everything 
from turning into a terrible snarl of conflicting moves, we change the 
weights only by small amounts. 

But what is “small”? For every network and data set, we have to exper-
iment to find out. As we saw above, the size of our step is controlled 
by the learning rate, or eta (η). The bigger this value, the more each 
weight will move towards its new value. 

Let’s start with a really large learning rate of 0.5. Figure 18.49 shows 
the boundaries computed by our network for our test data. 

Figure 18.49: The boundaries computed by our network using a learning 
rate of 0.5. 
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This is terrible. Everything is being assigned to a single class, shown 
by the light orange background. If we look at the accuracy and error 
(or loss) after each epoch, we get the graphs of Figure 18.50. 

Figure 18.50: Accuracy and loss for our moons data with a learning rate 
of 0.5. 

Things are looking bad. As we’d expect, the accuracy is just about 0.5, 
meaning that half the points are being misclassified. This makes sense, 
since the red and blue points are roughly evenly divided. If we assign 
them all to one category, as we’re doing here, half of those assignments 
will be wrong. The loss, or error, starts high and doesn’t fall. If we let 
the network run for hundreds of epochs it continues on in this way, 
never improving. 

What are the weights doing? Figure 18.51 shows the values of all 37 
weights during training. 
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Figure 18.51: The weights of our network when using a learning rate of 
0.5. One weight is constantly changing and overshooting its goal, while 
the others aren’t making any visible changes. 

Most of the weights don’t seem to be moving at all, but they could be 
meandering a little bit. The graph is dominated by one weight that’s 
jumping all over. That weight is one of those going into the output 
neuron, trying to move its output around to match the label. That 
weight goes up, then down, then up, jumping too far every time, then 
over-correcting by too much, then over-correcting for that, and so on. 

These results are disappointing, but they’re not shocking, because a 
learning rate of 0.5 is big. 

Let’s reduce the training rate by a factor of 10 to a more common value 
of 0.05. We’ll change absolutely nothing else about the network and 
the data, and we’ll even re-use the same sequence of pseudo-random 
numbers to initialize the weights. The new boundaries are shown in 
Figure 18.52. 
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Figure 18.52: The decision boundaries when we use a learning rate of 
0.05. 

This is much better! This is great! Looking at the graphs in Figure 18.53 
reveals that we’ve reached 100% accuracy on both the training and test 
sets after about 16 epochs. 

Figure 18.53: Accuracy and loss for our network when using a learning 
rate of 0.05. 

What are the weights doing? Figure 18.54 shows us their history. 
Overall, this is way better, because lots of weights are changing. Some 
weights are getting pretty large. In Chapter 20 we’ll cover regularization 
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techniques to keep the weights small in deep networks, and later in this 
chapter we’ll see why it’s nice to keep the weights small (say, between 

−1 and 1). For the moment, let’s just note that the weights have each 
learned a good value. 

Figure 18.54: The weights in our network over time, using a learning rate 
of 0.05. 

So that’s success. Our network has learned to perfectly sort the data, 
and it did it in only 16 epochs, which is nice and fast. On a late 2014 
iMac without GPU support, the whole training process took less than 
10 seconds. 

Just for fun, let’s lower the learning rate down to 0.01. Now the weights 
will change even more slowly. Does this produce better results? 

Figure 18.55 shows the decision boundary resulting from these tiny 
steps. The boundary seems to use more straight lines than the bound-
ary in Figure 18.52, but both boundaries separate the sets perfectly. 
We might prefer the boundaries of Figure 18.52 in some situations, as 
they seem to better follow the shape of the data. 
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Figure 18.55: The decision boundaries for a learning rate of 0.01. 

Figure 18.56 show our accuracy and loss graphs. Because our learning 
rate is so much slower, our network takes around 170 epochs to get to 
100% accuracy, rather than the 16 in Figure 18.54. 

Figure 18.56: The accuracy and learning rate for our network using a 
learning rate of 0.01. 

These graphs show an interesting learning behavior. After an initial 
jump, both the training and test accuracies reach about 90% and pla-
teau there. At the same time, the losses hit about 0.2 (for the test data) 
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and 0.25 (for the training), and they plateau as well. Then around 
epoch 170, things improve rapidly again, with the accuracy climbing to 
100% and the errors dropping to 0. 

This pattern of alternating improvement and plateaus is not unusual, 
and we can even see a hint of it in Figure 18.53 where there’s an imper-
fect plateau between epochs 3 and 8. These plateaus come from the 
weights finding themselves on nearly flat regions of the error surface, 
resulting in near-zero gradients, and thus their updates are very small. 

Though our weights might be getting stuck in local minima, it’s more 
common for them to get caught in a flat region of a saddle, like those we 
saw in Chapter 5 [Dauphin14]. Sometimes it takes a long time for one 
of the weights to move into a region where the gradient (or derivative) 
is large enough to give it a good push. When one weight gets moving, 
it’s common to see the others kick in as well, thanks to the cascading 
effect of that first weight’s changes on the rest of the network. 

The values of the weights follow almost the same pattern over time, 
as shown in Figure 18.57. The interesting thing is that at least some 
of the weights are not flat, or on a plateau. They’re changing, but very 
slowly. The system is getting better, but in tiny steps that don’t show 
up in the performance graphs until the changes become bigger around 
epoch 170. 
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Figure 18.57: The history of our weights using a learning rate of 0.01. 

The weights seem to be growing a little bit even at epoch 200. If we let 
the system continue, these weights will continue to slowly grow over 
time with no apparent effect on the accuracies or errors. 

So was there any benefit to lowering the learning rate down to 0.01? 
Not really. Even at 0.05, the categorization was already perfect on both 
the training and test data. In this case, the smaller learning rate just 
meant the network took longer to learn. 

This investigation has shown us how sensitive the network is to our 
choice of learning rate. 

When we look for the best value for the learning rate, it can feel 
like we’re the character of Goldilocks in recent versions of the fable 
Goldilocks and the Three Bears [Wikipedia17]. We’re searching for 
something that’s not too big, and not too small, but “just right.” 
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When our learning rate was too big, the weights took steps that were 
too large, and the network never settled down or improved its per-
formance. When the learning rate was too small, our progress was 
very slow, as the weights sometimes were creeping from one value to 
another at a glacial pace. 

When the learning rate was just right, training was fast and efficient, 
and produced great results. In this case, they were perfect. 

This kind of experimenting with the learning rate is part of developing 
nearly every deep learning network. The speed with which backprop 
changes the weights needs to be tuned to match the type of network 
and the type of data. Happily, we’ll see in Chapter 19 that there are 
automatic tools that can handle the learning rate for us in sophisti-
cated ways. 

18.12  Discussion
Let’s recap what we’ve seen, and then consider some of the implica-
tions of the backpropagation algorithm. 

18.12.1  Backprop In One Place
To recap quickly, we start by running a sample through the network 
and calculate the output for every neuron, as in Figure 18.58(a). 
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Figure 18.58: The backprop algorithm, along with weight update, in a 
nutshell. This figure collects Figure 18.20, Figure 18.43, and Figure 18.46 
in one place. Part (a) shows the forward step, part (b) shows finding the 
deltas for the output neurons, part (c) steps propgates the deltas back-
wards, and step (d) updates the weights. 

Then we kick off the backprop algorithm in Figure 18.58(b). We find 
the delta value for each of the output neurons, telling us that if the 
neuron’s output changes by a certain amount, the error will change by 
that amount times the neuron’s delta. 

Now we take a step backwards in Figure 18.58(c) to the previous layer 
of the network, and find the deltas for all the neurons in that layer. We 
need only the deltas from the output layer, and the weights between 
the two layers. 

Once all the deltas are assigned, we update the weights. Using the del-
tas and neuron outputs, we compute an adjustment to every weight. 
We scale that adjustment by the learning rate, and then add it to the 
current value of the weight to get the new, updated value of the weight, 
as in in Figure 18.58(d). 
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18.12.2  What Backprop Doesn’t Do
There’s a shorthand in some discussions of backprop that can be con-
fusing. Authors sometimes say something like, “backpropagation 
moves the error backwards from the output layer to the input layer,” 
or “backpropagation uses the error at each layer to find the error at the 
layer before.” 

This can be misleading because backprop is not “moving the error” at 
all. In fact, the only time we use “the error” is at the very start of the 
process when we find the delta values for the output neurons. 

What’s really going on involves the change in the error, which is rep-
resented by the delta values. These act as amplifiers of change in the 
neuron outputs, telling us that if an output value or weight changes by 
a given amount, we can predict the corresponding change in the error. 

So backprop isn’t moving “the error” backwards. But something is 
moving backwards. Let’s see what that is. 

18.12.3  What Backprop Does Do
The first step in the backprop process is to find the deltas for the output 
neurons. These are found from the gradient of the error. We sliced 
the gradient to get a look at the 2D curve for each prediction, and then 
we took the derivative of that curve, but that was just for ease of visu-
alization and discussion. The derivatives are just pieces of what really 
matters: the gradient. 

As we work our way backwards, the deltas continue to represent gra-
dients. Every delta value represents a different gradient. For instance, 
the delta attached to a neuron C describes the gradient of the error 
with respect to the output of C, and the delta for A describes the gradi-
ent of the error with respect to changes in the output of A. 
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So when we change the weights, we’re changing them in order to fol-
low the gradient of the error. This is an example of gradient descent, 
which mimics the path that water takes as it runs downhill on a 
landscape. 

We can say that backpropagation is an algorithm that lets us efficiently 
update our weights using gradient descent, since the deltas it com-
putes describe that gradient. 

So a nice way to summarize backprop is to say that it moves the gradi-
ent of the error backwards, modifying it to account for each neuron’s 
contribution. 

18.12.4  Keeping Neurons Happy
When we put activation functions back into the backprop algorithm, 
we concentrated on the region where the inputs are near 0. 

That wasn’t an accident. Let’s return to the sigmoid function, and look 
at what happens when the value into the activation function (that is, 
the sum of the weighted inputs) becomes a very large number, say 10 
or more. Figure 18.59 shows the sigmoid between values of −20 and 
20, along with its derivative in the same range. 
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Figure 18.59: The sigmoid function becomes flat for very large positive 
and negative values. Left: The sigmoid for the range −20 to 20. Right: The 
derivative of the sigmoid in the same range. Note that the vertical scales 
of the two plots are different. 

The sigmoid never quite reaches exactly 1 or 0 at either end, but it 
gets extremely close. Similarly, the value of the derivative never quite 
reaches 0, but as we can see from the graph it gets very close. 

Figure 18.60 shows a neuron with a sigmoid activation function. The 
value going into the function, which we’ve labeled z, has the value 10, 
putting it in one of the curve’s flat regions. 

Figure 18.60: When we apply a large value (say 10) to the sigmoid, we 
find ourselves in a flat region and get back the value of 1.

From Figure 18.59, we can see that the output is basically 1. 
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Now suppose that we change one of the weights, as shown in Figure 
18.61. The value z increases, so we move right on the activation func-
tion curve to find our output. Let’s say that the new value of z is 15. The 
output is still basically 1. 

Figure 18.61: A big increase to the weight AD coming into this neuron 
has no effect on its output, because it just pushes us further to the right 
along the flat region of the sigmoid. The neuron’s output was 1 before we 
added ADm to the weight AD, and it’s still 1 afterwards. 

If we increase the value of the incoming weight again, even by a lot, 
we’ll still get back an output of 1. In other words, changing the incom-
ing weight has no effect on the output. And because the output doesn’t 
change, the error doesn’t change. 

We could have predicted this from the derivative in Figure 18.59. When 
the input is 15, the derivative is 0 (actually about 0.0000003, but our 
convention above says that we can call that 0). So changing the input 
will result no change in the output. 

This is a terrible situation for any kind of learning, because we’ve lost 
the ability to improve the network by adjusting this weight. In fact, 
none of the weights coming into this neuron matter anymore (if we 
keep the changes small), because any changes to the weighted sum of 
the inputs, whether they make the sum smaller or larger, still lands us 
on a flat part of the function and thus there’s no change to the output, 
and no change to the error. 
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The same problem holds if the input value is very negative, say less 
than −10. The sigmoid curve is flat in that region also, and the deriva-
tive is also essentially zero. 

In both of these cases we say that this neuron has saturated. Like a 
sponge that cannot hold any more water, this neuron cannot hold any 
more input. The output is 1, and unless the weights, the incoming val-
ues, or both, move a lot closer to 0, it’s going to stay at 1. 

The result is that this neuron no longer participates in learning, which 
is a blow to our system. If this happens to enough neurons, the system 
could become crippled, learning more slowly than it should, or per-
haps even not at all. 

A popular way to prevent this problem is to use regularization. Recall 
from Chapter 9 that the goal of regularization is to keep the sizes of the 
weights small, or close to 0. Among other benefits, this has the value of 
keeping the sum of the weighted inputs for each neuron also small and 
close to zero, which puts us in the nice S-shaped part of the activation 
function. This is where learning happens. In Chapters 23 and 24 we’ll 
see techniques for regularization in deep learning networks. 

Saturation can happen with any activation function where the output 
curve becomes flat for a while (or forever). 

Other activation functions can have their own problems. Consider the 
popular ReLU curve, plotted from −20 to 20 in Figure 18.62. 
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Figure 18.62: The ReLU activation function in the range −20 to 20. Positive 
values won’t saturate the function, but negative values can cause it to die. 
Left: The ReLU function. Right: The derivative of ReLU.

As long as the input is positive, this function won’t saturate, because 
the output is the same as the input. The derivative for positive inputs 
is 1, so the sum of the weighted inputs will be passed directly to the 
output without change. 

But when the input is negative, the function’s output is 0, and the 
derivative is 0 as well. Not only do changes make no difference to the 
output, but the output itself has ceased to make any contribution to 
the error. The neuron’s output is 0 and unless the weights, inputs, or 
both change by a lot, it’s going to stay at 0. 

To characterize this dramatic effect, we say that this neuron has died, 
or is now dead. 

Depending on the initial weights and the first input sample, one or 
more neurons could die the very first time we perform an update step. 
Then as training goes on, more neurons can die. 

If a lot of neurons die during training, then our network is suddenly 
working with just a fraction of the neurons we thought it had. That 
cripples our network. Sometimes even 40% of our neurons can die off 
during training [Karpathy16]. 
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When we build a neural network we choose the activation functions for 
each layer based on experience and expectations. In many situations, 
sigmoids or ReLUs feel like the right function to use, and in many 
circumstances they work great. But when a network learns slowly, or 
fails to learn, it pays to look at the neurons and see if some or many 
are saturated, dying, or dead. If so, we can experiment with our initial 
starting weights and our learning rate to see if we can avoid the prob-
lem. If that doesn’t work, we might need to re-structure our network, 
choose other activation functions, or both. 

18.12.5  Mini-Batches
In our discussion above, we followed three steps for every sample: 
run the sample through the network, calculate all the deltas, and then 
adjust all the weights. 

It turns out that we can save some time, and sometimes even improve 
our learning, by only adjusting the weights infrequently. 

Recall from Chapter 8 that the full training set of samples is sometimes 
called a batch of samples. We can break up that batch into smaller 
mini-batches. Usually the size of our mini-batch is picked to match 
whatever parallel hardware we have available. For instance, if we our 
hardware (say a GPU) can evaluate 16 samples simultaneously, then 
our mini-batch size will be 16. Common mini-batch sizes are 16, 32, 
and 64, though they can go higher. 

The idea is that we run a mini-batch of samples through the network 
in parallel, and then we compute all the deltas in parallel. We’ll aver-
age together all the deltas, and use those averages to then perform a 
single update to the weights. So instead of updating the weights after 
every sample, they’re updated after a mini-batch of 16 samples (or 32, 
64, etc.). 

This gives us a big increase in speed. It can also improve learning, 
because the changes to the weights are smoothed out a little by the 
averaging over the whole mini-batch. This means if there’s one weird 
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sample in the set, it can’t pull all the weights in an unwanted direction. 
The deltas for that weird sample get averaged with the other 31 or 63 
samples in the mini-batch, reducing its impact. 

18.12.6  Parallel Updates
Since each weight depends only on values from the neurons at its two 
ends, every weight’s update step is completely independent from every 
other weight’s update step. 

When we carry out the same steps for independent pieces of data, that’s 
usually our cue to use parallel processing. 

And indeed, most modern implementations will, if parallel hardware is 
available, update all the weights in the network simultaneously. As we 
just discussed, this update will usually happen after each mini-batch 
of samples. 

This is an enormous time-saver, but it comes at a cost. As we’ve dis-
cussed, changing any weight in the network will change the output 
value for every neuron that’s downstream from that weight. So changes 
to the weights near the very start of the network can have enormous 
ripple effects on later neurons, causing them to change their outputs 
by a lot. 

Since the gradients represented by our deltas depend on the values in 
the network, changing a weight near the input means that we should 
really re-compute all the deltas for all the neurons that consume that 
value that weight modifies. That could mean almost every neuron in 
the network. 

This would destroy our ability to update in parallel. It would also make 
backprop agonizingly slow, since we’d be spending all of our time 
re-evaluating gradients and computing deltas. 

As we’ve seen, the way to prevent chaos is to use a “small enough” 
learning rate. If the learning rate is too large, things go haywire and 
don’t settle. If it’s too small, we waste a lot of time taking overly tiny 
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steps. Picking the “just right” value of the learning rate preserves the 
efficiency of backprop, and our ability to carry out its calculations in 
parallel. 

18.12.7  Why Backprop Is Attractive
A big part of backprop’s appeal is that it’s so efficient. It’s the fastest 
way that anyone has thought of to figure out how to most beneficially 
update the weights in a neural network. 

As we saw before, and summarized in Figure 18.43, running one step of 
backprop in a modern library usually takes about as long as evaluating 
a sample. In other words, consider the time it takes to start with new 
values in the inputs, and flow that data through the whole network and 
ultimately to the output layer. Running one step of backprop to com-
pute all the resulting deltas takes about the same amount of time. 

That remarkable fact is at the heart of why backprop has become a key 
workhorse of machine learning, even though we usually have to deal 
with issues like a fiddly learning rate, saturating neurons, and dying 
neurons. 

18.12.8  Backprop Is Not Guaranteed 
It’s important to note that there’s no guarantee that this scheme is 
going to learn anything! It’s not like the single perceptron of Chapter 
10, where we have ironclad proofs that after enough steps, the percep-
tron will find the dividing line it’s looking for. 

When we have many thousands of neurons, and potentially many mil-
lions of weights, the problem is too complicated to give a rigorous 
proof that things will always behave as we want. 

In fact, things often do go wrong when we first try to train a new net-
work. The network might learn glacially slowly, or even not at all. It 
might improve for a bit and then seem to suddenly take a wrong turn 



798

Chapter 18: Backpropagation

and forget everything. All kinds of stuff can happen, which is why 
many modern libraries offer visualization tools for watching the per-
formance of a network as it learns. 

When things go wrong, the first thing many people try is to crank the 
learning rate to a very small value. If everything settles down, that’s a 
good sign. If the system now appears to be learning, even if it’s barely 
perceptible, that’s another good sign. Then we can slowly increase the 
learning rate until it’s learning as quickly as possible without succumb-
ing to chaos. 

If that doesn’t work, then there might be a problem with the design of 
the network. 

This is a complex problem to deal with. Designing a successful network 
means making a lot of good choices. For instance, we need to choose 
the number of layers, the number of neurons on each layer, how the 
neurons should be connected, what activation functions to use, what 
learning rate to use, and so on. Getting everything right can be chal-
lenging. We usually need a combination of experience, knowledge of 
our data, and experimentation to design a neural network that will not 
only learn, but do it efficiently. 

In the following chapters we’ll see some architectures that have proven 
to be good starting points for wide varieties of tasks. But each new 
combination of network and data is its own new thing, and requires 
thought and patience. 

18.12.9  A Little History
When backpropagation was first described in the neural network liter-
ature in 1986 it completely changed how people thought about neural 
networks [Rumelhart86]. The explosion of research and practical ben-
efits that followed were all made possible by this surprisingly efficient 
technique for finding gradients. 
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But this wasn’t the first time that backprop had been discovered or used. 
This algorithm, which has been called one of the 30 “great numerical 
algorithms” [Trefethen15], has been discovered and re-discovered by 
different people in different fields since at least the 1960’s. There are 
many disciplines that use connected networks of mathematical oper-
ations, and finding the derivatives and gradients of those operations 
at every step is a common and important problem. Clever people who 
tackled this problem have re-discovered backprop time and again, 
often giving it a new name each time. 

Excellent capsule histories are available online and in print 
[Griewank12] [Schmidhuber15] [Kurenkov15] [Werbos96]. We’ll sum-
marize some of the common threads here. But history can only cover 
the published literature. There’s no knowing how many people have 
discovered and re-discovered backprop, but didn’t publish it. 

Perhaps the earliest use of backprop in the form we know it today 
was published in 1970, when it was used for analyzing the accuracy 
of numerical calculations [Linnainmaa70], though there was no ref-
erence made to neural networks. The process of finding a derivative 
is sometimes called differentiation, so the technique was known as 
reverse-mode automatic differentiation. 

It was independently discovered at about the same time by another 
researcher who was working in chemical engineering [Griewank12]. 

Perhaps its first explicit investigation for use in neural networks was 
made in 1974 [Werbos74], but because such ideas were out of fashion, 
that work wasn’t published until 1982 [Schmidhuber15]. 

Reverse-mode automatic differentiation was used in various sci-
ences for years. But when the classic 1986 paper re-discovered the 
idea and demonstrated its value to neural networks the idea immedi-
ately became a staple of the field under the name backpropagation 
[Rumelhart86]. 
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Backpropagation is central to deep learning, and it forms the founda-
tion for the techniques that we’ll be considering in the remainder of 
this book. 

18.12.10  Digging into the Math
This section offers some suggestions for dealing with the math of back-
propagation. If you’re not interested in that, you can safely skip this 
section. 

Backpropagation is all about manipulations to numbers, hence its 
description as a “numerical algorithm.” That makes it a natural for 
presenting in a mathematical context. 

Even when the equations are stripped down, they can appear formida-
ble [Neilsen15b]. Here are a few hints for getting through the notation 
and into the heart of the matter. 

First, it’s essential to master each author’s notation. There are a lot of 
things running around in backpropagation: errors, weights, activation 
functions, gradients, and so on. Everything will have a name, usually 
just a single letter. A good first step is to scan through the whole dis-
cussion quickly, and notice what names are given to what objects. It 
often helps to write these down so you don’t have to search for their 
meanings later. 

The next step is to work out how these names are used to refer to the 
different objects. For example, each weight might be written as some-
thing like w ljk , referring to the weight that links neuron number k on 
layer l to neuron j on layer l+1. This is a lot to pack into one symbol, 
and when there are several of these things in one equation it can get 
hard to sort out what’s going on. 
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One way to clear the thickets is to choose values for all the subscripts, 
and then simplify the equations so each of these highly-indexed terms 
refers to just one specific thing (such as a single weight). If you think 
visually, consider drawing pictures showing just what objects are 
involved, and how their values are being used. 

The heart of the backprop algorithm can be thought of, and written 
as, an application of the chain rule from calculus [Karpathy15]. This 
is an elegant way to describe the way different changes relate to one 
another, but it requires familiarity with multidimensional calculus. 
Luckily, there’s a wealth of online tutorials and resources designed 
to help people come up to speed on just this topic [MathCentre09] 
[Khan13]. 

We’ve seen that in practice the computations for outputs, deltas, and 
weight updates can be performed in parallel. They can also be writ-
ten in a parallel form using the linear algebra language of vectors and 
matrices. For example, it’s common to write the heart of the forward 
pass (without each neuron’s activation function) with a matrix repre-
senting the weights between two layers. Then we use that matrix to 
multiply a vector of the neuron outputs in the previous layer. In the 
same way, we can write the heart of the backward pass as the trans-
pose of that weight matrix times a vector of the following layer’s deltas. 

This is a natural formalism, since these computations consist of lots of 
multiplies followed by additions, which is just what matrix multiplica-
tion does for us. And this structure fits nicely onto a GPU, so it’s a nice 
place to start when writing code. 

But this linear algebra formalism can obscure the relatively sim-
ple steps, because one now has to deal with not just the underlying 
computation, but its parallel structure in the matrix format, and the 
proliferation of indices that often comes along with it. We can say that 
compacting the equations in this form is a type of optimization, where 
we’re aiming for simplicity in both the equations and the algorithms 
they describe. When learning backprop, people who aren’t already 
very familiar with linear algebra can reasonably feel that this is a form 
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of premature optimization, because (until it is mastered) it obscures, 
rather than elucidates, the underlying mechanics [Hyde09]. Arguably, 
only once the backprop algorithm is fully understood should it be 
rolled up into the more compact matrix form. Thus it may be helpful 
to either find a presentation that doesn’t start with the matrix algebra 
approach, or try to pull those equations apart into individual opera-
tions, rather than big parallel multiplications of matrices and vectors. 

Another potential hurdle is that the activation functions (and their 
derivatives) tend to get presented in different ad hoc ways. 

To summarize, many authors start their discussions with either the 
chain rule or matrix forms of the basic equations, so that the equa-
tions appear tidy and compact. Then they explain why those equations 
are useful and correct. Such notation and equations can look daunting, 
but if we pull them apart to their basics we’ll recognize the steps we 
saw in this chapter. Once we’ve unpacked these equations and then 
put them back together, we can see them as natural summaries of an 
elegant algorithm. 
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